Isomorphic properties of intersection bodies

被引:26
作者
Koldobsky, A. [1 ]
Paouris, G. [2 ]
Zymonopoulou, M. [3 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Univ Crete, Dept Math, Iraklion 71409, Crete, Greece
基金
美国国家科学基金会;
关键词
BUSEMANN-PETTY PROBLEM; CONVEX-BODIES; BANACH-SPACES; ISOPERIMETRIC-INEQUALITIES; SECTIONS; ELLIPSOIDS; TRANSFORMS; GEOMETRY; VOLUME;
D O I
10.1016/j.jfa.2011.07.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study isomorphic properties of two generalizations of intersection bodies - the class I(k)(n) of k-intersection bodies in R(n) and the class BP(k)(n) of generalized k-intersection bodies in R(n). In particular, we show that all convex bodies can be in a certain sense approximated by intersection bodies, namely, if K is any symmetric convex body in R(n) and 1 <= k <= n - 1 then the outer volume ratio distance from K to the class BP(k)(n) can be estimated by o.v.r.(K, BP(k)(n)) : = inf{|C|/|K|)1/n : C is an element of BP(k)(n), K subset of C} <= c root n/k log en/k, where c > 0 is an absolute constant. Next we prove that if K is a symmetric convex body in R(n), 1 <= k <= n - 1 and its k-intersection body 1(k) (K) exists and is convex, then d(Bm) (I(k)(K), B(2)(n)) <= c(k), where c(k) is a constant depending only on k, d(BM) is the Banach-Mazur distance, and B(2)(n) is the unit Euclidean ball in R(n). This generalizes a well-known result of Hensley and Borell. We conclude the paper with volumetric estimates for k-intersection bodies. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2697 / 2716
页数:20
相关论文
共 53 条
[1]  
[Anonymous], LECT NOTES MATH
[2]   COMPUTING THE VOLUME IS DIFFICULT [J].
BARANY, I ;
FUREDI, Z .
DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (04) :319-326
[3]   APPROXIMATION OF THE SPHERE BY POLYTOPES HAVING FEW VERTICES [J].
BARANY, I ;
FUREDI, Z .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (03) :651-659
[4]  
Bobkov SG, 2003, LECT NOTES MATH, V1807, P44
[5]   COMPLEMENTS OF LYAPUNOVS INEQUALITY [J].
BORELL, C .
MATHEMATISCHE ANNALEN, 1973, 205 (04) :323-331
[6]   NEW VOLUME RATIO PROPERTIES FOR CONVEX SYMMETRICAL BODIES IN RN [J].
BOURGAIN, J ;
MILMAN, VD .
INVENTIONES MATHEMATICAE, 1987, 88 (02) :319-340
[7]  
Bourgain J., 1996, CONVEX GEOMETRIC ANA, V34, P65, DOI DOI 10.2977/PRIMS/1195144828.MR1665578
[9]  
Busemann H., 1956, Math. Scand, V4, P88, DOI [10.7146/math.scand.a-10457, DOI 10.7146/MATH.SCAND.A-10457]
[10]  
Busemann H., 1953, Pacific J. Math, V3, P1, DOI [10.2140/pjm.1953.3.1, DOI 10.2140/PJM.1953.3.1]