Maximum likelihood estimation under misspecified lognormal and Weibull distributions

被引:15
|
作者
Pascual, FG [1 ]
机构
[1] Washington State Univ, Dept Math, Pullman, WA 99164 USA
[2] Washington State Univ, Dept Stat, Pullman, WA 99164 USA
关键词
asymptotic bias; asymptotic mean square error; distribution misspecification; quasi-maximum likelihood estimators; Type I and II censoring;
D O I
10.1081/SAC-200068380
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article provides expressions for computing the asymptotic distribution of maximum likelihood estimators of lognormal and Weibull parameters when the distribution is misspecified and data are Type I or II censored. The results can be used to derive the asymptotic normal distribution of observed bias in estimation of functions of model parameters such as quantiles. The methods are applied to a Type I censored dataset on locomotive controls. The results are used to derive test plans that are bias-robust for estimating quantiles. Values of the proportions failing that minimize asymptotic mean square error and absolute asymptotic bias are tabulated.
引用
收藏
页码:503 / 524
页数:22
相关论文
共 50 条