A Unified Cloud Platform for Autonomous Driving

被引:33
|
作者
Liu, Shaoshan [1 ]
Tang, Jie [2 ]
Wang, Chao
Wang, Quan [3 ]
Gaudiot, Jean-Luc [4 ]
机构
[1] PerceptIn, Sunnyvale, CA 94085 USA
[2] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou, Guangdong, Peoples R China
[3] Baidu, Autonomous Driving Unit, Beijing, Peoples R China
[4] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA USA
基金
美国国家科学基金会;
关键词
Alluxio; autonomous vehicles; Baidu; BinPipeRDD; CNN; convolution neural network; distributed computing; distributed storage; Hadoop; Hadoop Distributed File System; HDFS; heterogeneous computing; LiDAR; Linux Containers; LXC; map generation; MapReduce; model training; OpenCL; Paddle; Parallel Distributed Deep Learning; RDD; resilient distributed dataset; Robot Operating System; ROS; self-driving cars; simulation testing; Spark; YARN;
D O I
10.1109/MC.2017.4451224
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Tailoring cloud support for each autonomous-driving application would require maintaining multiple infrastructures, potentially resulting in low resource utilization, low performance, and high management overhead. To address this problem, the authors present a unified cloud infrastructure with Spark for distributed computing, Alluxio for distributed storage, and OpenCL to exploit heterogeneous computing resources for enhanced performance and energy efficiency.
引用
收藏
页码:42 / 49
页数:8
相关论文
共 50 条
  • [1] Cloud Incubator Car: A Reliable Platform for Autonomous Driving
    Borraz, Raul
    Navarro, Pedro J.
    Fernandez, Carlos
    Maria Alcover, Pedro
    APPLIED SCIENCES-BASEL, 2018, 8 (02):
  • [2] Unified Evaluation Framework for Autonomous Driving Vehicles
    Roshdi, Myada
    Nayeer, Nasif
    Elmahgiubi, Mohammed
    Agrawal, Ankur
    Garcia, Danson Evan
    2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 1277 - 1282
  • [3] PMWorld: A Parallel Testing Platform for Autonomous Driving in Mines
    Ai, Yunfeng
    Liu, Yuhang
    Gao, Yu
    Zhao, Chen
    Cheng, Xiang
    Han, Jinpeng
    Tian, Bin
    Chen, Long
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 1402 - 1411
  • [4] Real-Time LiDAR Point Cloud Semantic Segmentation for Autonomous Driving
    Xie, Xing
    Bai, Lin
    Huang, Xinming
    ELECTRONICS, 2022, 11 (01)
  • [5] Lidar Point Cloud Compression, Processing and Learning for Autonomous Driving
    Abbasi, Rashid
    Bashir, Ali Kashif
    Alyamani, Hasan J.
    Amin, Farhan
    Doh, Jaehyeok
    Chen, Jianwen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (01) : 962 - 979
  • [6] JUPITER - ROS based Vehicle Platform for Autonomous Driving Research
    Haselberger, Johann
    Pelzer, Marcel
    Schick, Bernhard
    Mueller, Steffen
    2022 IEEE INTERNATIONAL SYMPOSIUM ON ROBOTIC AND SENSORS ENVIRONMENTS (ROSE), 2022,
  • [7] Real-Time LiDAR Point-Cloud Moving Object Segmentation for Autonomous Driving
    Xie, Xing
    Wei, Haowen
    Yang, Yongjie
    SENSORS, 2023, 23 (01)
  • [8] Deep Learning for Image and Point Cloud Fusion in Autonomous Driving: A Review
    Cui, Yaodong
    Chen, Ren
    Chu, Wenbo
    Chen, Long
    Tian, Daxin
    Li, Ying
    Cao, Dongpu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (02) : 722 - 739
  • [9] AI-Based Point Cloud Upsampling for Autonomous Driving Systems
    Salomon, Nicolas
    Delrieux, Claudio A.
    Borgnino, Leandro E.
    Morero, Damian A.
    2024 L LATIN AMERICAN COMPUTER CONFERENCE, CLEI 2024, 2024,
  • [10] Online Data Processing on Cloud and Hadoop Platform
    Akhtar, Ayesha
    Shakir, Muhammad Sohaib
    2017 FOURTH HCT INFORMATION TECHNOLOGY TRENDS (ITT), 2017, : 25 - 29