Strategy of metal iron doping and green-mediated ZnO nanoparticles: dissolubility, antibacterial and cytotoxic traits

被引:54
作者
Devi, S. Aiswarya [1 ]
Harshiny, M. [1 ]
Udaykumar, S. [2 ]
Gopinath, P. [2 ]
Matheswaran, M. [1 ]
机构
[1] Natl Inst Technol, Dept Chem Engn, Tiruchirappalli 620015, Tamil Nadu, India
[2] Indian Inst Technol, Ctr Nanotechnol, Roorkee 247667, Uttar Pradesh, India
关键词
ZINC-OXIDE NANOPARTICLES; DOPED ZNO; ANTIMICROBIAL ACTIVITY; AZADIRACHTA-INDICA; BIOGENIC SYNTHESIS; ESCHERICHIA-COLI; VISIBLE-LIGHT; LEAF EXTRACT; MANGANESE; PHOTOCATALYSIS;
D O I
10.1039/c7tx00093f
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Undoped and Fe-doped ZnO nanoparticles (NPs) were synthesized using Amaranthus spinosus leaf extract as a reducing agent. The physicochemical traits, dissolution, cytotoxicity, as well as the antioxidant, photocatalytic and antibacterial activities of synthesized NPs were investigated. The results revealed that ZnO NPs were rod shaped with hexagonal phase structure, and their crystal size, dissolubility and aggregation decreased with Fe doping of NPs. Cytotoxicity of the NPs was studied against MCF-7 cells by MTT assay. IC50 values for undoped and 1 wt% Fe-doped ZnO NPs were found to be 400 and 600 mu g mL(-1), respectively. Cell viability with Fe-doped ZnO NPs was higher than with undoped ZnO. Among the synthesized NPs, A. spinosus-mediated 1 wt% Fe-doped ZnO shows a better decolourization efficiency of 97% for indigo carmine dye under solar irradiance. The antibacterial activity of NPs was tested against Gram-negative Escherichia coli and Gram-positive Bacillus safensis using disc diffusion, minimum inhibitory concentration and growth curve method. The bactericidal activity of Fe-doped ZnO NPs was more prominent with E. coli than B. safensis bacteria and when compared to undoped ZnO.
引用
收藏
页码:854 / 865
页数:12
相关论文
共 57 条
[1]   Photocatalytic inactivation of E-Coli by ZnO-Ag nanoparticles under solar radiation [J].
Adhikari, Sangeeta ;
Banerjee, Aditi ;
Eswar, Neerugatti KrishnaRao ;
Sarkar, Debasish ;
Madras, Giridhar .
RSC ADVANCES, 2015, 5 (63) :51067-51077
[2]   One pot synthesis and characterization of Ag-ZnO/g-C3N4 photocatalyst with improved photoactivity and antibacterial properties [J].
Adhikari, Surya Prasad ;
Pant, Hem Raj ;
Kim, Jun Hee ;
Kim, Han Joo ;
Park, Chan Hee ;
Kim, Cheol Sang .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2015, 482 :477-484
[3]   Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts [J].
Akhtar, Mohd Sayeed ;
Panwar, Jitendra ;
Yun, Yeoung-Sang .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2013, 1 (06) :591-602
[4]  
Al-Kahlout A., 2015, Journal of the Association of Arab Universities for Basic and Applied Sciences, V17, P66, DOI [DOI 10.1016/J.JAUBAS.2014.02.004, 10.1016/j.jaubas.2014.02.004]
[5]  
[Anonymous], 2017, J BIONANOSCI, DOI DOI 10.1166/JBNS.2017.1422
[6]   Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface [J].
Arakha, Manoranjan ;
Pal, Sweta ;
Samantarrai, Devyani ;
Panigrahi, Tapan K. ;
Mallick, Bairagi C. ;
Pramanik, Krishna ;
Mallick, Bibekanand ;
Jha, Suman .
SCIENTIFIC REPORTS, 2015, 5
[7]   Synthesis, diffused reflectance and electrical properties of nanocrystalline Fe-doped ZnO via sol-gel calcination technique [J].
Aydin, C. ;
Abd El-sadek, M. S. ;
Zheng, Kaibo ;
Yahia, I. S. ;
Yakuphanoglu, F. .
OPTICS AND LASER TECHNOLOGY, 2013, 48 :447-452
[8]   ZnO-Ag core shell nanocomposite formed by green method using essential oil of wild ginger and their bactericidal and cytotoxic effects [J].
Azizi, Susan ;
Mohamad, Rosfarizan ;
Rahim, Raha Abdul ;
Moghaddam, Amin Boroumand ;
Moniri, Mona ;
Ariff, Arbakariya ;
Saad, Wan Zuhainis ;
Namvab, Farideh .
APPLIED SURFACE SCIENCE, 2016, 384 :517-524
[9]   Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications [J].
Bhuyan, Tamanna ;
Mishra, Kavita ;
Khanuja, Manika ;
Prasad, Ram ;
Varma, Ajit .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2015, 32 :55-61
[10]  
Christensen L., 2011, ADV MAT LETT, V2, P429