Enhanced Water Retention by Using Polymeric Microcapsules to Confer High Proton Conductivity on Membranes at Low Humidity

被引:98
作者
Wang, Jingtao [1 ]
Zhang, Han [2 ]
Yang, Xinlin [2 ]
Jiang, Shuang [1 ]
Lv, Wenjun [1 ]
Jiang, Zhongyi [1 ]
Qiao, Shi Zhang [3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Minist Educ, Key Lab Green Chem Technol, Tianjin 300072, Peoples R China
[2] Nankai Univ, Inst Polymer Chem, Minist Educ, Key Lab Funct Polymer Mat, Tianjin 300071, Peoples R China
[3] Univ Queensland, Australian Inst Bioengn & Nanotechnol, ARC Ctr Excellence Funct Nanomat, Brisbane, Qld 4072, Australia
关键词
METHANOL FUEL-CELLS; EXCHANGE MEMBRANES; COMPOSITE MEMBRANES; ORGANIC/INORGANIC HYBRID; SUPERPOROUS HYDROGELS; ELECTROLYTE MEMBRANES; ELEVATED-TEMPERATURE; BLEND MEMBRANES; DRUG-DELIVERY; BOUND WATER;
D O I
10.1002/adfm.201001793
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Water retention is a pervasive issue in agriculture and industry. Inspired by the water-storage mechanisms in plant cells, three kinds of polymeric microcapsules (PMCs) with carboxylic acid, sulfonic acid, and pyridyl groups are prepared using distillation-precipitation polymerization. The size of the lumen of the PMCs may govern the static water uptake by holding water molecules in a free-water state, and the functional groups in the shell of PMCs may manipulate dynamic water release by holding water molecules in a bound-water state, thus yielding PMCs with high and tunable water-retention properties. Incorporation of PMCs into composite membranes gives rise to dramatically enhanced water-retention properties and proton-transfer pathway, and consequently increased proton conductivity by up to one order of magnitude over the control polymer membrane, under low relative humidity of 20%. This study may offer a facile and generic strategy to design and prepare a variety of materials with superior water-retention properties.
引用
收藏
页码:971 / 978
页数:8
相关论文
共 56 条
[1]   Function and characterization of metal oxide-naflon composite membranes for elevated-temperature H2/O2 PEM fuel cells [J].
Adjemian, KT ;
Dominey, R ;
Krishnan, L ;
Ota, H ;
Majsztrik, P ;
Zhang, T ;
Mann, J ;
Kirby, B ;
Gatto, L ;
Velo-Simpson, M ;
Leahy, J ;
Srinivasant, S ;
Benziger, JB ;
Bocarsly, AB .
CHEMISTRY OF MATERIALS, 2006, 18 (09) :2238-2248
[2]   Acid-functionalized mesostructured aluminosilica for hydrophilic proton conduction membranes [J].
Athens, George L. ;
Ein-Eli, Yair ;
Chmelka, Bradley F. .
ADVANCED MATERIALS, 2007, 19 (18) :2580-+
[3]   Protons and how they are transported by proton pumps [J].
Buch-Pedersen, M. J. ;
Pedersen, B. P. ;
Veierskov, B. ;
Nissen, P. ;
Palmgren, M. G. .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2009, 457 (03) :573-579
[4]  
Carrette L, 2000, CHEMPHYSCHEM, V1, P162, DOI 10.1002/1439-7641(20001215)1:4<162::AID-CPHC162>3.0.CO
[5]  
2-Z
[6]  
COPELAND RA, 1989, ANNU REV PHYS CHEM, V40, P671
[7]   Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: Preparation and characterizations [J].
Fu, Rong-Qiang ;
Woo, Jung-Je ;
Seo, Seok-Jun ;
Lee, Jae-Suk ;
Moon, Seung-Hyeon .
JOURNAL OF POWER SOURCES, 2008, 179 (02) :458-466
[8]   Simulation and Experimental Studies on Proton Diffusion in Polyelectrolytes Based on Sulfonated Naphthalenic Copolyimides [J].
Garrido, Leoncio ;
Pozuelo, Javier ;
Lopez-Gonzalez, Mar ;
Fang, Jianhua ;
Riande, Evaristo .
MACROMOLECULES, 2009, 42 (17) :6572-6580
[9]   pH-sensitivity of fast responsive superporous hydrogels [J].
Gemeinhart, RA ;
Chen, J ;
Park, H ;
Park, K .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2000, 11 (12) :1371-1380
[10]   Hydrogels: from controlled release to pH-responsive drug delivery [J].
Gupta, P ;
Vermani, K ;
Garg, S .
DRUG DISCOVERY TODAY, 2002, 7 (10) :569-579