Context-Aware Social Media User Sentiment Analysis

被引:17
作者
Liu, Bo [1 ,2 ]
Tang, Shijiao [1 ,2 ]
Sun, Xiangguo [1 ,2 ]
Chen, Qiaoyun [3 ]
Cao, Jiuxin [4 ]
Luo, Junzhou [1 ,2 ]
Zhao, Shanshan [5 ]
机构
[1] Southeast Univ, Sch Comp Sci & Engn, Nanjing 211189, Peoples R China
[2] Minist Educ China, Key Lab Comp Network & Informat, Nanjing 211189, Peoples R China
[3] Microsoft Res Asia, Suzhou 215000, Peoples R China
[4] Southeast Univ, Sch Cyber Sci & Engn, Nanjing 211189, Peoples R China
[5] Univ West England, Dept Comp Sci & Creat Technol, Bristol BS16 1QY, Avon, England
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
social media; sentiment analysis; multimodal data; context-aware; topic model;
D O I
10.26599/TST.2019.9010021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The user-generated social media messages usually contain considerable multimodal content. Such messages are usually short and lack explicit sentiment words. However, we can understand the sentiment associated with such messages by analyzing the context, which is essential to improve the sentiment analysis performance. Unfortunately, majority of the existing studies consider the impact of contextual information based on a single data model. In this study, we propose a novel model for performing context-aware user sentiment analysis. This model involves the semantic correlation of different modalities and the effects of tweet context information. Based on our experimental results obtained using the Twitter dataset, our approach is observed to outperform the other existing methods in analysing user sentiment.
引用
收藏
页码:528 / 541
页数:14
相关论文
共 41 条
[1]   An introduction to MCMC for machine learning [J].
Andrieu, C ;
de Freitas, N ;
Doucet, A ;
Jordan, MI .
MACHINE LEARNING, 2003, 50 (1-2) :5-43
[2]  
[Anonymous], 2014, P COLING 2014 25 INT
[3]  
[Anonymous], TSINGHUA SCI TECHNOL
[4]   A multimodal feature learning approach for sentiment analysis of social network multimedia [J].
Baecchi, Claudio ;
Uricchio, Tiberio ;
Bertini, Marco ;
Del Bimbo, Alberto .
MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (05) :2507-2525
[5]   A cross-media public sentiment analysis system for microblog [J].
Cao, Donglin ;
Ji, Rongrong ;
Lin, Dazhen ;
Li, Shaozi .
MULTIMEDIA SYSTEMS, 2016, 22 (04) :479-486
[6]  
Chang S.-F., 2013, P 21 ACM INT C MULT, P223, DOI 10.1145/2502081.2502282
[7]  
Chen T., 2013, ACM INT C MULT, P781, DOI [DOI 10.1145/2502081, 10.1145/2502081]
[8]  
De Choudhury M., 2014, CSCW 14, P626, DOI DOI 10.1145/2531602.2531675
[9]  
Ding Y, 2013, 2013 INTERNATIONAL CONFERENCE ON SENSOR NETWORK SECURITY TECHNOLOGY AND PRIVACY COMMUNICATION SYSTEM (SNS & PCS), P13
[10]   Efficient graph-based image segmentation [J].
Felzenszwalb, PF ;
Huttenlocher, DP .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (02) :167-181