Digital Twin: Applying emulation for machine reconditioning

被引:71
|
作者
Ayani, M. [1 ]
Ganeback, M. [2 ]
Ng, Amos H. C. [1 ]
机构
[1] Univ Skovde, Sch Engn Sci, Prod & Automat Engn Div, Skovde, Sweden
[2] Projektengagemang Ind & Energi Sverige AB, El & Automat, Skovde, Sweden
来源
51ST CIRP CONFERENCE ON MANUFACTURING SYSTEMS | 2018年 / 72卷
关键词
Digital twin; Emulation; Virtual commissioning; Industry; 4.0; Reconditioning; Retrofitting;
D O I
10.1016/j.procir.2018.03.139
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Old machine reconditioning projects extend the life length of machines with reduced investments, however they frequently involve complex challenges. Due to the lack of technical documentation and the fact that the machines are miming in production, they can require a reverse engineering phase and extremely short commissioning times. Recently, emulation software has become a key tool to create Digital Twins and carry out virtual commissioning of new manufacturing systems, reducing the commissioning time and increasing its final quality. This paper presents an industrial application study in which an emulation model is used to support a reconditioning project and where the benefits gained in the working process are highlighted. (C) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:243 / 248
页数:6
相关论文
共 50 条
  • [1] Applying a 6 DoF Robotic Arm and Digital Twin to Automate Fan-Blade Reconditioning for Aerospace Maintenance, Repair, and Overhaul
    Oyekan, John
    Farnsworth, Michael
    Hutabarat, Windo
    Miller, David
    Tiwari, Ashutosh
    SENSORS, 2020, 20 (16) : 1 - 20
  • [2] The digital twin of machine tools
    Fischer A.
    Spescha D.
    Semm T.
    Ceresa N.
    Zäh M.F.
    WT Werkstattstechnik, 2021, 111 (03): : 179 - 184
  • [3] Modular digital twin for machine tools
    Dörrer F.
    Otto A.
    Kolouch M.
    Frieß U.
    ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2021, 116 (09): : 622 - 626
  • [4] A human digital twin for the M-Machine
    Saariluoma, Pertti
    Myllylä, Mari
    Karvonen, Antero
    Luimula, Mika
    Aho, Jami
    Discover Artificial Intelligence, 2024, 4 (01):
  • [5] Evaluating a Digital Twin of an IoT Resource Slice: An Emulation Study Using the ELIoT Platform
    Granelli, Fabrizio
    Capraro, Riccardo
    Lorandi, Michela
    Casari, Paolo
    IEEE Networking Letters, 2021, 3 (03): : 147 - 151
  • [6] Colosseum as a Digital Twin: Bridging Real-World Experimentation and Wireless Network Emulation
    Villa, Davide
    Tehrani-Moayyed, Miead
    Robinson, Clifton Paul
    Bonati, Leonardo
    Johari, Pedram
    Polese, Michele
    Melodia, Tommaso
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 9150 - 9166
  • [7] Machine and Deep Learning for Digital Twin Networks: A Survey
    Qin, Baolin
    Pan, Heng
    Dai, Yueyue
    Si, Xueming
    Huang, Xiaoyan
    Yuen, Chau
    Zhang, Yan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (21): : 34694 - 34716
  • [8] The virtual coordinate measuring machine - a digital metrological twin
    Haertig, Frank
    Kniel, Karin
    Heisselmann, Daniel
    TM-TECHNISCHES MESSEN, 2023, 90 (09) : 548 - 556
  • [9] Digital Twin Enabled Asset Management of Machine Tools
    Sicard, Brett
    Wu, Yuandi
    Gadsden, Stephen Andrew
    2024 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, ICPHM 2024, 2024, : 285 - 292
  • [10] Accelerate machine designs, via digital twin collaboration
    Hoske, Mark T.
    Control Engineering, 2021, 68 (08)