Effects of interlayer temperature on the microstructures of wire arc additive manufactured Al-Zn-Mg-Cu alloy: Insights into texture responses and dynamic precipitation behaviors

被引:70
作者
Dong, Bolun [1 ]
Cai, Xiaoyu [1 ]
Xia, Yunhao [1 ]
Lin, Sanbao [1 ]
Fan, Chenglei [1 ]
Chen, Fukang [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China
关键词
Additive Manufacturing; Al-Zn-Mg-Cu; Interlayer Temperature; Texture; Dynamic Precipitation; POSTDEPOSITION HEAT-TREATMENT; MECHANICAL-PROPERTIES; ALUMINUM-ALLOY; EQUIAXED TRANSITION; TENSILE PROPERTIES; EVOLUTION; GROWTH; 2219-AL; SOLIDIFICATION; SIMULATION;
D O I
10.1016/j.addma.2021.102453
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wire arc additive manufacturing (WAAM) has advantages in fabricating large-size high-strength aluminum due to unconcentrated heat sources and lower cooling rates. Successful practices in depositing high-strength 2000 series alloys have been reported extensively in recent years. However, research on the WAAM of ultra-highstrength 7000 series Al-Zn-Mg-Cu alloys is still in the feasibility verification stage. This study aims to clarify the complex relationship between microstructures and interlayer temperatures during WAAM in a high alloyed quaternary Al-Zn-Mg-Cu alloy. Single-pass multi-layered components were fabricated with interlayer temperatures of 100 degrees C, 200 degrees C, and 300 degrees C for microstructure characterization. A validated numerical model was used to simulate the thermal process and provide clues for mechanism analysis. Results show that higher interlayer temperatures lead to the non-uniform orientation of twin dendrites, refined grains, and increased high angle grain boundaries (HAGBs). But its effects on the phase type and chemical composition of second phases and precipitates are very limited. Rising interlayer temperatures help to accelerate the dynamic precipitation progress. In the thermal cycles of the specimens included in this work, the contribution of arc heat is vital to drive the dynamic precipitation process. In contrast, the contribution of interlayer temperature is very limited in general. However, higher interlayer temperatures do contribute more to driving the dynamic precipitation process. The non-uniform distribution of hardness was observed along the height direction of the fabricated specimens, where the evolution of hardness agrees well with the progress of dynamic precipitation.
引用
收藏
页数:18
相关论文
共 56 条
[1]   Assessing the effect of TIG alternating current time cycle on aluminium wire plus arc additive manufacture [J].
Ayarkwa, K. F. ;
Williams, S. W. ;
Ding, J. .
ADDITIVE MANUFACTURING, 2017, 18 :186-193
[2]   Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective [J].
Azarniya, Abolfazl ;
Taheri, Ali Karimi ;
Taheri, Kourosh Karimi .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 781 :945-983
[3]   Mechanical Properties and Fracture Behaviors of GTA-Additive Manufactured 2219-Al After an Especial Heat Treatment [J].
Bai, J. Y. ;
Fan, C. L. ;
Lin, S. B. ;
Yang, C. L. ;
Dong, B. L. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2017, 26 (04) :1808-1816
[4]   Effects of thermal cycles on microstructure evolution of 2219-Al during GTA-additive manufacturing [J].
Bai, J. Y. ;
Fan, C. L. ;
Lin, S. B. ;
Yang, C. L. ;
Dong, B. L. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 87 (9-12) :2615-2623
[5]   Mechanical properties of 2219-Al components produced by additive manufacturing with TIG [J].
Bai, J. Y. ;
Yang, C. L. ;
Lin, S. B. ;
Dong, B. L. ;
Fan, C. L. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 86 (1-4) :479-485
[6]   Microstructure and mechanical properties of TiB2-reinforced 7075 aluminum matrix composites fabricated by laser melting deposition [J].
Bi Jiang ;
Lei Zhenglong ;
Chen Xi ;
Li Peng ;
Lu Nannan ;
Chen Yanbin .
CERAMICS INTERNATIONAL, 2019, 45 (05) :5680-5692
[7]   Effects of post-deposition heat treatment on microstructures of GTA-additive manufactured 2219-Al [J].
Cai, Xiaoyu ;
Dong, Bolun ;
Bai, Jiuyang ;
Lin, Sanbao ;
Fan, Chenglei ;
Yang, Chunli .
SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2019, 24 (05) :474-483
[8]   Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy [J].
Chung, Tsai-Fu ;
Yang, Yo-Lun ;
Huang, Bo-Ming ;
Shi, Zhusheng ;
Lin, Jianguo ;
Ohmura, Takahito ;
Yang, Jer-Ren .
ACTA MATERIALIA, 2018, 149 :377-387
[9]   Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3% Cu alloy [J].
Cong, Baoqiang ;
Ding, Jialuo ;
Williams, Stewart .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 76 (9-12) :1593-1606
[10]   Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements [J].
Deng, Dean ;
Murakawa, Hidekazu .
COMPUTATIONAL MATERIALS SCIENCE, 2006, 37 (03) :269-277