A MODIFIED INERTIAL SUBGRADIENT EXTRAGRADIENT METHOD FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND COMMON FIXED POINT PROBLEMS

被引:135
作者
Ceng, L. C. [1 ]
Petrusel, A. [2 ,3 ]
Qin, X. [4 ]
Yao, J. C. [5 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Babes Bolyai Univ, Dept Math, Cluj Napoca, Romania
[3] Acad Romanian Scientists, Bucharest, Romania
[4] Natl Yunlin Univ Sci & Technol, Gen Educ Ctr, Touliu 64002, Taiwan
[5] China Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40447, Taiwan
来源
FIXED POINT THEORY | 2020年 / 21卷 / 01期
关键词
Inertial subgradient extragradient method; variational inequality; pseudomonotone mapping; nonexpansive mapping; fixed point; STRONG-CONVERGENCE; PROJECTION METHOD; APPROXIMATION; CONSTRAINTS; SYSTEMS;
D O I
10.24193/fpt-ro.2020.1.07
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a modified inertial subgradient extragradient method for solving a variational inequality problem with Lipschitz pseudomonotone mapping and a common fixed-point problem of a family of nonexpansive mappings. Under mild conditions, we obtain strong convergence theorems in a real Hilbert space. An application is also provided.
引用
收藏
页码:93 / 108
页数:16
相关论文
共 24 条
[1]  
[Anonymous], 2001, INHERENTLY PARALLEL
[2]  
[Anonymous], 2019, APPL SET VALUED ANAL
[3]  
[Anonymous], 1976, Matecon
[4]  
Ansari Q.H., 2015, FIXED POINT THEORY A, V2015
[5]   Systems of variational inequalities with hierarchical variational inequality constraints for asymptotically nonexpansive and pseudocontractive mappings [J].
Ceng, Lu-Chuan ;
Wen, Ching-Feng .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) :2431-2447
[6]   SYSTEMS OF VARIATIONAL INEQUALITIES WITH HIERARCHICAL VARIATIONAL INEQUALITY CONSTRAINTS FOR LIPSCHITZIAN PSEUDOCONTRACTIONS [J].
Ceng, Lu-Chuan ;
Petrusel, Adrian ;
Yao, Jen-Chih ;
Yao, Yonghong .
FIXED POINT THEORY, 2019, 20 (01) :113-133
[7]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[8]   STRONG CONVERGENCE ANALYSIS OF A HYBRID ALGORITHM FOR NONLINEAR OPERATORS IN A BANACH SPACE [J].
Cho, Sun Young .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (01) :19-31
[9]   Generalized mixed equilibrium and fixed point problems in a Banach space [J].
Cho, Sun Young .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03) :1083-1092
[10]  
Cho SY, 2012, ACTA MATH SCI, V32, P1607