Pyrolysis and autoignition behaviors of beech wood coated with an acrylic-based waterborne layer

被引:9
作者
Gong, Junhui [1 ]
Zhai, Chunjie [1 ,2 ]
Wang, Zhirong [1 ]
机构
[1] Nanjing Tech Univ, Coll Safety Sci & Engn, Nanjing 210009, Jiangsu, Peoples R China
[2] Nanjing Forest Police Coll, Dept Informat Technol, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal decomposition; Autoignition; Beech wood; Coating; Critical temperature; Critical mass loss rate; SPONTANEOUS IGNITION; THERMAL-DEGRADATION; WET WOOD; KINETIC-PARAMETERS; CONE CALORIMETER; FIRE BEHAVIORS; BIOMASS; MODEL; SURFACE; THERMODYNAMICS;
D O I
10.1016/j.fuel.2021.121724
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Pyrolysis and autoignition of beech wood covered with an acrylic-based waterborne coating layer are experimentally and numerically examined. Thermogravimetric Analysis (TGA) tests were conducted first for wood and coating to derive the kinetic parameters combining a numerical model, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Subsequently, bench scale autoignition tests of thermally thick wood and coating wood composite with varying coating thickness were performed under four radiative heat fluxes. Thermal conductivities and heat capacities of wood, coating and yielded residue were determined by inversely modelling the measured surface and 3 mm in-depth temperatures at a moderate heat flux. Reliability of the fully parameterized model was validated by simulating the collected surface temperatures and mass loss rates at the remaining heating conditions. Meanwhile, the recorded autoignition times were predicted by the model using the measured critical temperature and critical mass flux. The results show that both GA and PSO yield identical accuracy in fitting the TGA measurements, and their average results are adopted. The parameterized model successfully captures the measured surface temperatures and mass loss rates before ignition despite some minor deviations. Application of the coating considerably improves the fire resistance of wood by increasing the critical heat flux, critical temperature, critical mass flux and ignition time. The measured autoignition times are relatively well estimated, and an approximate linear correlation exists between ignition time and coating thickness.
引用
收藏
页数:11
相关论文
共 58 条
[1]   Smouldering of pine wood: Kinetics and reaction heats [J].
Anca-Couce, Andres ;
Zobel, Nico ;
Berger, Anka ;
Behrendt, Frank .
COMBUSTION AND FLAME, 2012, 159 (04) :1708-1719
[2]   Heat transfer and kinetics in the pyrolysis of shrinking biomass particle [J].
Babu, BV ;
Chaurasia, AS .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (10) :1999-2012
[3]  
Báez Sergio, 2017, Ingeniare. Rev. chil. ing., V25, P654
[4]   Experimental and theoretical study of the ignition and smoldering of wood including convective effects [J].
Bilbao, R ;
Mastral, JF ;
Aldea, ME ;
Ceamanos, J ;
Betrán, M ;
Lana, JA .
COMBUSTION AND FLAME, 2001, 126 (1-2) :1363-1372
[5]   Glowing ignition of wood: the onset of surface combustion [J].
Boonmee, N ;
Quintiere, JG .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2005, 30 :2303-2310
[6]   Glowing and flaming autoignition of wood [J].
Boonmee, N ;
Quintiere, JG .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2002, 29 :289-296
[7]   Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle [J].
Bryden, KM ;
Hagge, MJ .
FUEL, 2003, 82 (13) :1633-1644
[8]   THE USE OF TIME TO IGNITION DATA FOR CHARACTERIZING THE THERMAL INERTIA AND THE MINIMUM (CRITICAL) HEAT-FLUX FOR IGNITION OR PYROLYSIS [J].
DELICHATSIOS, MA ;
PANAGIOTOU, T ;
KILEY, F .
COMBUSTION AND FLAME, 1991, 84 (3-4) :323-332
[9]   Ignition of wood under time-varying radiant exposures [J].
DiDomizio, Matthew J. ;
Mulherin, Patrick ;
Weckman, Elizabeth J. .
FIRE SAFETY JOURNAL, 2016, 82 :131-144
[10]   The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis [J].
Ding, Yanming ;
Zhang, Wenlong ;
Yu, Lei ;
Lu, Kaihua .
ENERGY, 2019, 176 :582-588