Novel designed core-shell nanofibers constituted by single element-doped BaTiO3 for high-energy-density polymer nanocomposites

被引:42
作者
Hu, Jin [1 ]
Liu, Yang [2 ]
Zhang, Shufen [1 ]
Tang, Bingtao [1 ]
机构
[1] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, State Key Lab Coastal & Offshore Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Core-shell nanofibers; Dielectrics; Polymer nanocomposites; Energy storage; POLY(VINYLIDENE FLUORIDE) NANOCOMPOSITES; ENHANCED DIELECTRIC-PROPERTIES; STORAGE DENSITY; COMPOSITES; CAPACITORS; EFFICIENCY; FILLER; MATRIX; FILMS;
D O I
10.1016/j.cej.2021.131046
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Core-shell nanofillers designed for dielectric nanocomposites are expected to integrate high relative permittivity (er) and breakdown strength (Eb). However, conventional core-shell nanofillers exhibit two major drawbacks: (i) the low-er shell greatly limits the er of the entire nanofiller, and (ii) the differences of calcination performance and lattice constant between the core and shell materials induce extra imperfections, which can cause premature breakdown. As a result, significantly enhancing the discharge energy density (Ud) at low filling content is difficult. Herein, core-shell nanofibers constituted by single element-doped BaTiO3 are prepared as fillers. They integrate relatively high er and Eb, helping to obtain high-Ud dielectric nanocomposites. The single-layer nanocomposite films with 2 wt% polydopamine-modified BZT15@BZT35 nanofibers (BZT15@BZT35@PDA_nfs) show 64% enhancement of Ud compared with pristine poly (vinylidene fluoride) (PVDF) matrix. The sandwich nanocomposite films (PVDF/BZT15@BZT35@PDA_nf/PVDF/PVDF) with 2 wt% nanofibers in the middle layer achieve approximately 100% enhancement. The proposed nanofiller design strategy can be easily realized by coaxial electrospinning and further developed by tri-axial electrospinning and other multi-nozzle electrospinning methods. This study provides valuable insights into developing high-energy-density polymer nanocomposites with low filling content.
引用
收藏
页数:9
相关论文
共 61 条
[1]   Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density [J].
Bi, Ke ;
Bi, Meihua ;
Hao, Yanan ;
Luo, Wei ;
Cai, Ziming ;
Wang, Xiaohui ;
Huang, Yunhui .
NANO ENERGY, 2018, 51 :513-523
[2]   Structure-property correlations and origin of relaxor behaviour in BaCexTi1-xO3 [J].
Canu, Giovanna ;
Confalonieri, Giorgia ;
Deluca, Marco ;
Curecheriu, Lavinia ;
Buscaglia, Maria Teresa ;
Asandulesa, Mihai ;
Horchidan, Nadejda ;
Dapiaggi, Monica ;
Mitoseriu, Liliana ;
Buscaglia, Vincenzo .
ACTA MATERIALIA, 2018, 152 :258-268
[3]   Large enhancement of discharge energy density of polymer nanocomposites filled with one-dimension core-shell structured NaNbO3@SiO2 nanowires [J].
Chen, Jianwen ;
Ye, Dagui ;
Wu, Xiaowei ;
Zhu, Wenbo ;
Wang, Xiucai ;
Xiao, Peng ;
Duan, Zhikui ;
Yu, Xinmei .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2020, 133
[4]   High Energy Storage Density for Poly(vinylidene fluoride) Composites by Introduced Core-Shell CaCu3Ti4O12@Al2O3 Nanofibers [J].
Chi, Qingguo ;
Wang, Xubin ;
Zhang, Changhai ;
Chen, Qingguo ;
Chen, Minghua ;
Zhang, Tiandong ;
Gao, Liang ;
Zhang, Yue ;
Cui, Yang ;
Wang, Xuan ;
Lei, Qingquan .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (07) :8641-8649
[5]   A dielectric polymer with high electric energy density and fast discharge speed [J].
Chu, Baojin ;
Zhou, Xin ;
Ren, Kailiang ;
Neese, Bret ;
Lin, Minren ;
Wang, Qing ;
Bauer, F. ;
Zhang, Q. M. .
SCIENCE, 2006, 313 (5785) :334-336
[6]   Optimizing sandwich-structured composites based on the structure of the filler and the polymer matrix: toward high energy storage properties [J].
Cui, Yang ;
Wang, Xuan ;
Zhang, Tiandong ;
Zhang, Changhai ;
Chi, Qingguo .
RSC ADVANCES, 2019, 9 (57) :33229-33237
[7]   Excellent energy storage density and efficiency in blend polymer-based composites by design of core-shell structured inorganic fibers and sandwich structured films [J].
Cui, Yang ;
Zhang, Tiandong ;
Feng, Yu ;
Zhang, Changhai ;
Chi, Qingguo ;
Zhang, Yongquan ;
Chen, Qingguo ;
Wang, Xuan ;
Lei, Qingquan .
COMPOSITES PART B-ENGINEERING, 2019, 177
[8]   Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage [J].
Dang, Zhi-Min ;
Yuan, Jin-Kai ;
Yao, Sheng-Hong ;
Liao, Rui-Jin .
ADVANCED MATERIALS, 2013, 25 (44) :6334-6365
[9]   Recent progress on core-shell structured BaTiO3@polymer/fluorinated polymers nanocomposites for high energy storage: Synthesis, dielectric properties and applications [J].
Ezzahra Bouharras, Fatima ;
Raihane, Mustapha ;
Ameduri, Bruno .
PROGRESS IN MATERIALS SCIENCE, 2020, 113
[10]   Significantly enhanced energy storage density with superior thermal stability by optimizing Ba(Zr0.15Ti0.85)O3/Ba(Zr0.35Ti0.65)O3 multilayer structure [J].
Fan, Qiaolan ;
Liu, Ming ;
Ma, Chunrui ;
Wang, Linxi ;
Ren, Shengping ;
Lu, Lu ;
Lou, Xiaojie ;
Jia, Chun-Lin .
NANO ENERGY, 2018, 51 :539-545