Stochastic properties of residual life and inactivity time at a random time

被引:37
作者
Misra, N. [1 ]
Gupta, N. [1 ]
Dhariyal, I. Dutt [1 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
DFR; DMIT; DMRL; DRFR; IFR; IMIT; IMRL; IRFR; ITRT; log-concave; log-convex; RLRT;
D O I
10.1080/15326340701828290
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present sufficient conditions for log-concavity and log-convexity of the residual life and the inactivity time. We also make stochastic comparisons on the residual life and the inactivity time in terms of the failure rate order, the mean residual life order and the usual stochastic order. These results strengthen some conclusions in Li and Zuo([11]) and Yue and Cao([19]).
引用
收藏
页码:89 / 102
页数:14
相关论文
共 19 条
[1]   Characterizations of the RHR and MIT orderings and the DRHR and IMIT classes of life distributions [J].
Ahmad, IA ;
Kayid, M .
PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2005, 19 (04) :447-461
[2]   Further results involving the mit order and the imit class [J].
Ahmad, IA ;
Kayid, M ;
Pellerey, F .
PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2005, 19 (03) :377-395
[3]  
Artin E., 1931, EINFUHRUNG THEORIE G
[4]  
Barlow RE, 1975, STAT THEORY RELIABIL
[5]   The reversed hazard rate function [J].
Block, HW ;
Savits, TH ;
Singh, H .
PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 1998, 12 (01) :69-90
[6]   FURTHER MONOTONICITY PROPERTIES FOR SPECIALIZED RENEWAL PROCESSES [J].
BROWN, M .
ANNALS OF PROBABILITY, 1981, 9 (05) :891-895
[7]   Some results on reversed hazard rate [J].
Chandra, NK ;
Roy, D .
PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2001, 15 (01) :95-102
[8]  
Kayid M, 2004, PROBAB ENG INFORM SC, V18, P395
[9]  
Keilson J., 1982, CANAD J STATIST, V10, P181
[10]   Stochastic comparison of residual life and inactivity time at a random time [J].
Li, XH ;
Zuo, MJ .
STOCHASTIC MODELS, 2004, 20 (02) :229-235