共 50 条
Unprecedented porosity transformation of hierarchically porous TiO2 derived from Ti-Oxo clusters
被引:6
|作者:
Park, Seonghun
[1
]
Lee, Jieun
[2
]
Kim, Bongkyum
[1
]
Yuan, Daqiang
[3
]
Chen, Ying-Pin
[4
]
Park, Jinhee
[1
]
机构:
[1] DGIST, Dept Emerging Mat Sci, 333 Techno Jungang Daero, Daegu 42988, South Korea
[2] Korea Electrotechnol Res Inst, Creat & Fundamental Res Div, 12,Bulmosan Ro 10 Beon Gil, Chang Won 51543, South Korea
[3] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
[4] Appl Vir, Dept Prot Purificat, 48521 Warm Spring Blvd, Fremont, CA 94539 USA
基金:
新加坡国家研究基金会;
关键词:
TiO2;
Hierarchically porous materials;
Porosity transformation;
Photocatalysts;
Reactive oxygen species;
TITANIUM-DIOXIDE NANOMATERIALS;
HIGH SURFACE-AREAS;
MESOPOROUS TIO2;
BLACK TIO2;
PHOTOCATALYSIS;
OXIDE;
ACID;
CRYSTALLIZATION;
GENERATION;
REACTIVITY;
D O I:
10.1016/j.micromeso.2020.110153
中图分类号:
O69 [应用化学];
学科分类号:
081704 ;
摘要:
Although attaining a high porosity in TiO2 is critical to enhancing its photocatalytic and photoelectric activities, its synthesis has been challenging owing to the high reactivity of conventional Ti precursors and the laborious template removal process. Thus, we herein report a versatile method for preparing hierarchically porous organic-functionalized TiO2 (HiPOTs) using Ti-oxo clusters consisting of a rigid reactive ligand, para-aminobenzoate (p-ABA). The presence of p-ABA as a structure-directing template is crucial to obtain micmporous structures with sufficiently high yields. The HiPOTs gradually transform from hierarchically micro/mesoporous structures into mesoporous structures during a sol-gel process. The Brunauer-Emmett-Teller surface areas of the HiPOTs range from 242 to 739 m(2)/g, which are among the highest reported for porous TiO2 materials. The presence of p-ABA on the HiPOT surface decreases the band gap of TiO2 to 2.7 eV, and prolonging the sol-gel process releases greater quantities of p-ABA, thereby increasing the band gap and the crystallinity of the anatase phase. Interestingly, unlike conventional TiO2, which experiences rapid charge recombination, the Ti3+ oxidation states of HiPOTs are successfully isolated during UV irradiation and can be applied as a proof of concept to generate reactive oxygen species such as O-1(2) and O-center dot(2)-.
引用
收藏
页数:7
相关论文