DECAY ESTIMATES FOR SCHRODINGER HEAT SEMIGROUP WITH INVERSE SQUARE POTENTIAL IN LORENTZ SPACES II

被引:0
|
作者
Ishige, Kazuhiro [1 ]
Tateishi, Yujiro [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
关键词
Schrodinger heat semigroup; inverse square potential; Lorentz spaces; gradient estimates; positive harmonic functions; LARGE TIME BEHAVIOR; POSITIVE SOLUTIONS; KERNEL; EQUATION; CRITICALITY; BOUNDS; NORMS; DERIVATIVES; OPERATORS;
D O I
10.3934/dcds.2021121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H := -Delta + V be a nonnegative Schro center dot dinger operator on L-2(R-N), where N >= 2 and V is a radially symmetric inverse square potential. Let parallel to V(alpha)e(-tH)parallel to((Lp,sigma -> Lq,theta)) be the operator norm of del(alpha-tH)(e) from the Lorentz space L-p,L-sigma (R-N) to L-q,L-theta (R-N), where alpha is an element of{0, 1, 2, ... }. We establish both of upper and lower decay estimates of parallel to V(alpha)e(-tH)parallel to((Lp,sigma -> Lq,theta)) and study sharp decay estimates of parallel to V(alpha)e(-tH)parallel to((Lp,sigma -> Lq,theta)). Furthermore, we characterize the Laplace operator- increment from the view point of the decay of parallel to V(alpha)e(-tH)parallel to((Lp,sigma -> Lq,theta)).
引用
收藏
页码:369 / 401
页数:33
相关论文
共 42 条
  • [41] GLOBAL EXISTENCE AND BLOW-UP FOR THE FOCUSING INHOMOGENEOUS NONLINEAR SCHRODINGER EQUATION WITH INVERSE-SQUARE POTENTIAL
    An, Jinmyong
    Jang, Roesong
    Kim, Jinmyong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (02): : 1046 - 1067
  • [42] Global existence, blow-up and mass concentration for the inhomogeneous nonlinear Schrodinger equation with inverse-square potential
    Jian, Hui
    Gong, Min
    Cai, Meixia
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (12): : 7427 - 7451