DECAY ESTIMATES FOR SCHRODINGER HEAT SEMIGROUP WITH INVERSE SQUARE POTENTIAL IN LORENTZ SPACES II

被引:0
|
作者
Ishige, Kazuhiro [1 ]
Tateishi, Yujiro [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
关键词
Schrodinger heat semigroup; inverse square potential; Lorentz spaces; gradient estimates; positive harmonic functions; LARGE TIME BEHAVIOR; POSITIVE SOLUTIONS; KERNEL; EQUATION; CRITICALITY; BOUNDS; NORMS; DERIVATIVES; OPERATORS;
D O I
10.3934/dcds.2021121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H := -Delta + V be a nonnegative Schro center dot dinger operator on L-2(R-N), where N >= 2 and V is a radially symmetric inverse square potential. Let parallel to V(alpha)e(-tH)parallel to((Lp,sigma -> Lq,theta)) be the operator norm of del(alpha-tH)(e) from the Lorentz space L-p,L-sigma (R-N) to L-q,L-theta (R-N), where alpha is an element of{0, 1, 2, ... }. We establish both of upper and lower decay estimates of parallel to V(alpha)e(-tH)parallel to((Lp,sigma -> Lq,theta)) and study sharp decay estimates of parallel to V(alpha)e(-tH)parallel to((Lp,sigma -> Lq,theta)). Furthermore, we characterize the Laplace operator- increment from the view point of the decay of parallel to V(alpha)e(-tH)parallel to((Lp,sigma -> Lq,theta)).
引用
收藏
页码:369 / 401
页数:33
相关论文
共 42 条
  • [1] Decay estimates for Schrodinger heat semigroup with inverse square potential in Lorentz spaces
    Ishige, Kazuhiro
    Tateishi, Yujiro
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (01)
  • [2] Sharp decay estimates in Lorentz spaces for nonnegative Schrodinger heat semigroups
    Ioku, Norisuke
    Ishige, Kazuhiro
    Yanagida, Eiji
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (04): : 900 - 923
  • [3] Hot spots of solutions to the heat equation with inverse square potential
    Ishige, Kazuhiro
    Kabeya, Yoshitsugu
    Mukai, Asato
    APPLICABLE ANALYSIS, 2019, 98 (10) : 1843 - 1861
  • [4] The heat kernel of a Schrodinger operator with inverse square potential
    Ishige, Kazuhiro
    Kabeya, Yoshitsugu
    Ouhabaz, El Maati
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2017, 115 : 381 - 410
  • [5] Sobolev spaces adapted to the Schrodinger operator with inverse-square potential
    Killip, R.
    Miao, C.
    Visan, M.
    Zhang, J.
    Zheng, J.
    MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (3-4) : 1273 - 1298
  • [6] MAXIMAL ESTIMATES FOR SCHRODINGER EQUATIONS WITH INVERSE-SQUARE POTENTIAL
    Miao, Changxing
    Zhang, Junyong
    Zheng, Jiqiang
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 273 (01) : 1 - 19
  • [7] LARGE TIME BEHAVIOR OF SOLUTIONS OF THE HEAT EQUATION WITH INVERSE SQUARE POTENTIAL
    Ishige, Kazuhiro
    Mukai, Asato
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (08) : 4041 - 4069
  • [9] Strichartz estimates for the wave and Schrodinger equations with the inverse-square potential
    Burq, N
    Planchon, F
    Stalker, JG
    Tahvildar-Zadeh, AS
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 203 (02) : 519 - 549
  • [10] Uniform resolvent estimates for Schrodinger operator with an inverse-square potential
    Mizutani, Haruya
    Zhang, Junyong
    Zheng, Jiqiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (04)