Investigations on Periodic Sequences With Maximum Nonlinear Complexity

被引:12
作者
Sun, Zhimin [1 ]
Zeng, Xiangyong [1 ,2 ]
Li, Chunlei [3 ]
Helleseth, Tor [3 ]
机构
[1] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
[2] Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China
[3] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
基金
中国国家自然科学基金;
关键词
Periodic sequence; nonlinear complexity; kthorder complexity; LINEAR COMPLEXITY; BINARY SEQUENCES; PSEUDORANDOM NUMBERS; SPAN; PROFILE;
D O I
10.1109/TIT.2017.2714681
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The nonlinear complexity of a periodic sequence s is the length of the shortest feedback shift register that can generate s, and its value is upper bounded by the least period of s minus 1. In this paper, a recursive approach that generates all periodic sequences with maximum nonlinear complexity is presented, and the total number of such sequences is determined. The randomness properties of these sequences are also examined.
引用
收藏
页码:6188 / 6198
页数:11
相关论文
共 17 条
[1]  
[Anonymous], 1989, THESIS TU DELFT NETH
[2]   ON THE QUADRATIC SPANS OF DEBRUIJN SEQUENCES [J].
CHAN, AH ;
GAMES, RA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (04) :822-829
[3]  
Cunsheng Ding, 1997, Finite Fields and their Applications, V3, P159, DOI 10.1006/ffta.1997.0181
[4]   On the linear complexity of legendre sequences [J].
Ding, CS ;
Helleseth, T ;
Shan, WJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (03) :1276-1278
[5]   An Approximate Distribution for the Maximum Order Complexity [J].
Erdmann D. ;
Murphy S. .
Designs, Codes and Cryptography, 1997, 10 (3) :325-339
[6]  
Gutierrez J., 2013, IEEE T INFORM THEORY, V49, P60
[7]  
Helleseth T, 2014, RADON SER COMPUT APP, V16, P121
[8]  
Jansen C. J. A., 1990, P ADV CRYPT CRYPTO 8, P90
[9]  
MASSEY JL, 1969, IEEE T INFORM THEORY, V15, P122, DOI 10.1109/TIT.1969.1054260
[10]   On the linear complexity profile of some new explicit inversive pseudorandom numbers [J].
Meidl, W ;
Winterhof, A .
JOURNAL OF COMPLEXITY, 2004, 20 (2-3) :350-355