GelMA combined with sustained release of HUVECs derived exosomes for promoting cutaneous wound healing and facilitating skin regeneration

被引:107
作者
Zhao, Danyang [1 ]
Yu, Zhencheng [1 ]
Li, Yun [1 ]
Wang, Yu [2 ]
Li, Qingfeng [1 ]
Han, Dong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Dept Plast & Reconstruct Surg, Sch Med, 639 Zhizaoju Rd, Shanghai 200011, Peoples R China
[2] Shidong Hosp Yangpu Dist, Dept Cardiol, 999 Shiguang Rd, Shanghai 200438, Peoples R China
基金
中国国家自然科学基金;
关键词
Exosomes; HUVECs; GelMA; Controlled release; Wound healing; Skin regeneration; MESENCHYMAL STEM-CELLS; ENHANCE ANGIOGENESIS; HYDROGEL; MIGRATION; PROLIFERATION; MICROSPHERES; MECHANISMS; VESICLES; SCAFFOLD; CHITOSAN;
D O I
10.1007/s10735-020-09877-6
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
It remains a clinical challenge for cutaneous wound healing and skin regeneration. Endothelial cells participate in the formation of blood vessels and play an important role in the whole process of wound healing. Recent studies suggested that exosomes contribute to the intercellular communication through paracrine pathways, and sustained release of exosomes from hydrogel-based materials provide a promising strategy for curing wound defects. In this study, we isolated exosomes derived from human umbilical vein endothelial cells (HUVECs) and found that HUVECs derived exosomes (HUVECs-Exos) could promote the proliferation and migration activities of keratinocytes and fibroblasts, which are two important effector cells for skin regeneration. Then we developed gelatin methacryloyl (GelMA) hydrogel as the wound dressing to incorporate HUVECs-Exos and applied it to the full-thickness cutaneous wounds. It demonstrated that GelMA scaffold could not only repair the wound defect, but also achieve sustained release of exosomes. The in vivo results showed accelerated re-epithelialization, promotion of collagen maturity and improvement of angiogenesis. Collectively, our findings suggested that HUVECs-Exos could accelerate wound healing and GelMA mediated controlled release of HUVECs-Exos might offer a new method for repairing cutaneous wound defects.
引用
收藏
页码:251 / 263
页数:13
相关论文
共 67 条
[1]   Donor-Derived Brain Tumor Following Neural Stem Cell Transplantation in an Ataxia Telangiectasia Patient [J].
Amariglio, Ninette ;
Hirshberg, Abraham ;
Scheithauer, Bernd W. ;
Cohen, Yoram ;
Loewenthal, Ron ;
Trakhtenbrot, Luba ;
Paz, Nurit ;
Koren-Michowitz, Maya ;
Waldman, Dalia ;
Leider-Trejo, Leonor ;
Toren, Amos ;
Constantini, Shlomi ;
Rechavi, Gideon .
PLOS MEDICINE, 2009, 6 (02) :221-231
[2]   Malignant effusions and immunogenic tumour-derived exosomes [J].
Andre, F ;
Schartz, NEC ;
Movassagh, M ;
Flament, C ;
Pautier, P ;
Morice, P ;
Pomel, C ;
Lhomme, C ;
Escudier, B ;
Le Chevalier, T ;
Tursz, T ;
Amigorena, S ;
Raposo, G ;
Angevin, E ;
Zitvogel, L .
LANCET, 2002, 360 (9329) :295-305
[3]  
[Anonymous], 2015, COCHRANE DATABASE SY
[4]   Exosomes: New players in cell-cell communication [J].
Bang, Claudia ;
Thum, Thomas .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2012, 44 (11) :2060-2064
[5]   Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel [J].
Barati, Danial ;
Shariati, Seyed Ramin Pajoum ;
Moeinzadeh, Seyedsina ;
Melero-Martin, Juan M. ;
Khademhosseini, Ali ;
Jabbari, Esmaiel .
JOURNAL OF CONTROLLED RELEASE, 2016, 223 :126-136
[6]  
Benton JA, 2009, TISSUE ENG PT A, V15, P3221, DOI [10.1089/ten.tea.2008.0545, 10.1089/ten.TEA.2008.0545]
[7]   Simultaneous in vivo regeneration of neodermis, epidermis, and basement membrane [J].
Butler, CE ;
Orgill, DP .
REGENERATIVE MEDICINE II: CLINICAL AND PRECLINICAL APPLICATIONS, 2005, 94 :23-41
[8]   Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue [J].
Byambaa, Batzaya ;
Annabi, Nasim ;
Yue, Kan ;
Trujillo-de Santiago, Grissel ;
Moises Alvarez, Mario ;
Jia, Weitao ;
Kazemzadeh-Narbat, Mehdi ;
Shin, Su Ryon ;
Tamayol, Ali ;
Khademhosseini, Ali .
ADVANCED HEALTHCARE MATERIALS, 2017, 6 (16)
[9]   Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration [J].
Celikkin, Nehar ;
Mastrogiacomo, Simone ;
Jaroszewicz, Jakub ;
Walboomers, X. Frank ;
Swieszkowski, Wojciech .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2018, 106 (01) :201-209
[10]   Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels [J].
Chen, Ying-Chieh ;
Lin, Ruei-Zeng ;
Qi, Hao ;
Yang, Yunzhi ;
Bae, Hojae ;
Melero-Martin, Juan M. ;
Khademhosseini, Ali .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (10) :2027-2039