Investigating Chemotaxis in 2D with Moving Finite Elements

被引:0
作者
Wacher, Abigail [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III | 2010年 / 1281卷
关键词
Chemotaxis; aggregation of microglia; reaction-diffusion; moving finite elements; pattern formation; DISEASE SENILE PLAQUES; MICROGLIA; MODEL;
D O I
10.1063/1.3498399
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We numerically investigate a two dimensional model of aggregation of microglia in two spatial dimensions using the String Gradient Weighted Moving Finite Element method.
引用
收藏
页码:2170 / 2172
页数:3
相关论文
共 50 条
[31]   ATTRACTORS FOR THE NAVIER-STOKES-CAHN-HILLIARD SYSTEM WITH CHEMOTAXIS AND SINGULAR POTENTIAL IN 2D [J].
He, Jingning .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2025, :1590-1614
[32]   Boundedness of solutions to a 2D chemotaxis-Navier-Stokes system with general sensitivity and nonlinear diffusion [J].
Nam, Kwang-Myong ;
Li, Kwang-Ok ;
Kim, Yong -Ho .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 73
[33]   Exclusion of boundary blowup for 2D chemotaxis system provided with Dirichlet boundary condition for the Poisson part [J].
Suzuki, T. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (03) :347-367
[34]   Global classical solutions for the 2D four-component chemotaxis-Navier-Stokes equations [J].
Du, Yaxin ;
Zhang, Qian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 503 (02)
[35]   Global existence of weak solutions for 2D chemotaxis-Navier-Stokes system with fractional diffusion [J].
Zhang, Xuan ;
Lv, Yanxi ;
Zhang, Qian .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (04) :4790-4830
[36]   GLOBAL SOLUTIONS FOR A 2D CHEMOTAXIS-FLUID SYSTEM WITH LARGE MEASURES AS INITIAL DENSITY AND VORTICITY [J].
Ferreira, Lucas C. F. ;
Lima, Daniel P. A. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (03) :843-873
[37]   Analysis of 2D and 3D Finite Element Approach of a Switched Reluctance Motor [J].
Kolota, Jakub ;
Stepien, Slawomir .
PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (12A) :188-190
[38]   Uniform Lp Estimates for Solutions to the Inhomogeneous 2D Navier-Stokes Equations and Application to a Chemotaxis-Fluid System with Local Sensing [J].
Fuest, Mario ;
Winkler, Michael .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2024, 26 (04)
[39]   Quasi-online parametric identification of moving heating devices in a 2D geometry [J].
Vergnaud, Alban ;
Perez, Laetitia ;
Autrique, Laurent .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2016, 102 :47-61
[40]   Moving finite elements method applied to dynamic population balance equations [J].
Duarte, Belmiro P. M. ;
Baptista, Cristina M. S. G. .
AICHE JOURNAL, 2008, 54 (03) :673-692