Prediction of corneal permeability using artificial neural networks

被引:0
|
作者
Agatonovic-Kustrin, S
Evans, A
Alany, RG
机构
[1] Univ Auckland, Sch Pharm, Auckland 1, New Zealand
[2] Univ S Australia, Pharmaceut Res Ctr, Sch Pharmaceut Mol & Biomed Sci, Adelaide, SA 5001, Australia
来源
PHARMAZIE | 2003年 / 58卷 / 10期
关键词
D O I
暂无
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The purpose of this study was to develop a simple model for prediction of corneal permeability of structurally different drugs as a function of calculated molecular descriptors using artificial neural networks. A set of 45 compounds with experimentally derived values of corneal permeability (log C) was used to develop, test and validate a predictive model. Each compound was encoded with 1194 calculated molecular structure descriptors. A genetic algorithm was used to select a subset of descriptors that best describe corneal permeability coefficient log C and a supervised network with radial basis transfer function (RBF) was used to correlate calculated molecular descriptors with experimentally derived measures of corneal permeability. The best model, with 4 input descriptors and 12 hidden neurones was chosen, and the significance of the selected descriptors to corneal permeability was examined. Strong correlation of predicted with experimentally derived log C values (correlation coefficient greater than 0.87 and 0.83 respectively) was obtained for the training and testing data sets. The developed model could be useful for the rapid prediction of the corneal permeability of candidate drugs based on molecular structure alone as it does not require experimentally derived data.
引用
收藏
页码:725 / 729
页数:5
相关论文
共 50 条
  • [21] Prediction of tunnel convergence using Artificial Neural Networks
    Mahdevari, Satar
    Torabi, Seyed Rahman
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2012, 28 : 218 - 228
  • [22] Prediction of Modal Shift Using Artificial Neural Networks
    Akgol, Kadir
    Aydin, Metin Mutlu
    Asilkan, Ozcan
    Gunay, Banihan
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2014, 3 (03): : 223 - 229
  • [23] Prediction of wheat yield using artificial neural networks
    Safa, B
    Khalili, A
    Teshnehlab, M
    Liaghat, AM
    15TH CONFERENCE ON BIOMETEOROLOGY AND AEROBIOLOGY JOINT WITH THE 16TH INTERNATIONAL CONGRESS ON BIOMETEOROLOGY, 2002, : 350 - 351
  • [24] Soil salinity prediction using artificial neural networks
    Patel, RM
    Prasher, SO
    Goel, PK
    Bassi, R
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2002, 38 (01): : 91 - 100
  • [25] Prediction of slump in concrete using artificial neural networks
    Agrawal, V.
    Sharma, A.
    World Academy of Science, Engineering and Technology, 2010, 69 : 25 - 32
  • [26] STOCK MARKET PREDICTION USING ARTIFICIAL NEURAL NETWORKS
    Bharne, Pankaj K.
    Prabhune, Sameer S.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS), 2019, : 64 - 68
  • [27] Medical Image Prediction Using Artificial Neural Networks
    Xhako, Dafina
    Hyka, Niko
    TURKISH PHYSICAL SOCIETY 35TH INTERNATIONAL PHYSICS CONGRESS (TPS35), 2019, 2178
  • [28] Prediction of lake eutrophication using artificial neural networks
    Huo, Shouliang
    He, Zhuoshi
    Su, Jing
    Xi, Beidou
    Zhang, Lieyu
    Zan, Fengyu
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2015, 56 (1-4) : 63 - 78
  • [29] NFL Prediction using Committees of Artificial Neural Networks
    David, John A.
    Pasteur, R. Drew
    Ahmad, M. Saif
    Janning, Michael C.
    JOURNAL OF QUANTITATIVE ANALYSIS IN SPORTS, 2011, 7 (02)
  • [30] Prediction of Breast Cancer Using Artificial Neural Networks
    Ismail Saritas
    Journal of Medical Systems, 2012, 36 : 2901 - 2907