An adaptive inverse iteration algorithm using interpolating multiwavelets for structural eigenvalue problems

被引:3
作者
Wang, Youming [1 ,2 ]
Chen, Xuefeng [1 ]
He, Zhengjia [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
[2] Zhuzhou Times New Mat Technol Co Ltd, Zhuzhou 412007, Peoples R China
基金
中国国家自然科学基金;
关键词
Structural eigenvalues; Stable completion; Interpolating multiwavelets; Adaptive inverse iteration algorithm; CRACK LOCATION; VIBRATION; HOMOGENIZATION; IDENTIFICATION; BEAMS;
D O I
10.1016/j.ymssp.2010.08.007
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Structural eigenvalues have been broadly applied in modal analysis, damage detection, vibration control, etc. In this paper, the interpolating multiwavelets are custom designed based on stable completion method to solve structural eigenvalue problems. The operator-orthogonality of interpolating multiwavelets gives rise to highly sparse multilevel stiffness and mass matrices of structural eigenvalue problems and permits the incremental computation of the eigenvalue solution in an efficient manner. An adaptive inverse iteration algorithm using the interpolating multiwavelets is presented to solve structural eigenvalue problems. Numerical examples validate the accuracy and efficiency of the proposed algorithm. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:591 / 600
页数:10
相关论文
共 21 条
[1]  
[Anonymous], 2000, FINITE ELEMENT METHO
[2]  
[Anonymous], 1997, SIAM J MATH ANAL
[3]  
Bathe K.-J., 2006, FINITE ELEMENT PROCE
[4]   Local and global vibration of thin-walled members subjected to compression and non-uniform bending [J].
Bebiano, R. ;
Silvestre, N. ;
Camotim, D. .
JOURNAL OF SOUND AND VIBRATION, 2008, 315 (03) :509-535
[5]   Computation of eigenvalues and solutions of regular Sturm-Liouville problems using Haar wavelets [J].
Bujurke, N. M. ;
Salimath, C. S. ;
Shiralashetti, S. C. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 219 (01) :90-101
[6]   Local decomposition of refinable spaces and wavelets [J].
Carnicer, JM ;
Dahmen, W ;
Pena, JM .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (02) :127-153
[7]   Spatially adapted multiwavelets and sparse representation of integral equations on general geometries [J].
Castrillón-Candás, JE ;
Amaratunga, K .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (05) :1530-1566
[8]   Determination of crack location in beams using natural frequencies [J].
Chinchalkar, S .
JOURNAL OF SOUND AND VIBRATION, 2001, 247 (03) :417-429
[9]   Generalized hierarchical bases:: A wavelet-Ritz-Galerkin framework for Lagrangian FEM [J].
D'Heedene, S ;
Amaratunga, K ;
Castrillón-Candás, J .
ENGINEERING COMPUTATIONS, 2005, 22 (1-2) :15-37
[10]  
DAVIS GM, 1999, LECT NOTES PURE APPL