Fast High-Resolution Hyperbolic Radon Transform

被引:1
|
作者
Chen, Wei [1 ,2 ]
Yang, Liuqing [3 ]
Wang, Hang [4 ]
Chen, Yangkang [5 ]
机构
[1] Yangtze Univ, Minist Educ, Key Lab Explorat Technol Oil & Gas Resources, Wuhan 430100, Peoples R China
[2] Yangtze Univ, Minist Educ, Cooperat Innovat Ctr Unconvent Oil & Gas, Wuhan 430100, Hubei, Peoples R China
[3] China Univ Petr, Coll Geophys, Beijing 102249, Peoples R China
[4] Zhejiang Univ, Sch Earth Sci, Key Lab Geosci Big Data & Deep Resource Zhejiang, Hangzhou 310027, Peoples R China
[5] Univ Texas Austin, John A & Katherine G Jackson Sch Geosci, Bur Econ Geol, Austin, TX 78712 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Radon transform (RT); seismic noise suppression; signal processing; VELOCITY-STACK; INTERPOLATION; MIGRATION;
D O I
10.1109/TGRS.2021.3084612
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Due to its time-variant nature, the computationally expensive hyperbolic Radon transform (RT) is not easy to be accelerated, e.g., based on the convolution theorem in the frequency domain. However, the hyperbolic RT better matches the trajectories of reflection events in prestack gathers than other time-invariant RTs, e.g., linear or parabolic RTs. Hence, despite its large computational cost, the time-domain hyperbolic RT is still preferred in many seismic processing applications. We propose a fast high-resolution hyperbolic RT (HRHRT) with a fast butterfly algorithm. The forward and adjoint RTs can be greatly accelerated based on a fast butterfly algorithm by reformulating the time-space domain Radon operator as a frequency-domain Fourier integral operator (FIO). The fast butterfly algorithm solves the FIO problem by a blockwise low-rank approximation scheme. The single-step hyperbolic RT can be much faster (e.g., hundreds of times faster for a large problem) than the traditional implementation, resulting in a significant computational boost when the transform is taken in an iterative fashion to estimate the high-resolution Radon coefficients. We demonstrate the similar performance and the much different computational efficiencies between the proposed fast HRHRT and the traditional method over several different problems, i.e., random noise suppression, big-gap seismic reconstruction, and multiples attenuation.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] High-resolution grids of hourly meteorological variables for Germany
    Kraehenmann, S.
    Walter, A.
    Brienen, S.
    Imbery, F.
    Matzarakis, A.
    THEORETICAL AND APPLIED CLIMATOLOGY, 2018, 131 (3-4) : 899 - 926
  • [42] High-resolution distributed ISAR imaging by OMP method
    Li, Yuanyuan
    Fu, Yaowen
    Zhang, Wenpeng
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (19): : 6138 - 6142
  • [43] A high-resolution index for vegetation extraction in IKONOS images
    El-Mezouar, M. Chikr
    Taleb, N.
    Kpalma, K.
    Ronsin, J.
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XII, 2010, 7824
  • [44] High-resolution multichannel instrument for resonant sensor array
    Ferrari, P
    Flammini, A
    Marioli, D
    Taroni, A
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2003, 52 (03) : 932 - 937
  • [45] High-resolution genomic history of early medieval Europe
    Speidel, Leo
    Silva, Marina
    Booth, Thomas
    Raffield, Ben
    Anastasiadou, Kyriaki
    Barrington, Christopher
    Gotherstroem, Anders
    Heather, Peter
    Skoglund, Pontus
    NATURE, 2025, 637 (8044) : 118 - 126
  • [47] Anisotropic Radon transform and its application to demultiple
    Gong Xiang-Bo
    Han Li-Guo
    Li Hong-Jian
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2014, 57 (09): : 2928 - 2936
  • [48] A NEW HIGH-RESOLUTION SEA SURFACE TEMPERATURE BLENDED ANALYSIS
    Maturi, Eileen
    Harris, Andy
    Mittaz, Jonathan
    Sapper, John
    Wick, Gary
    Zhu, Xiaofang
    Dash, Prasanjit
    Koner, Prabhat
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2017, 98 (05) : 1015 - 1026
  • [49] High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP)
    Evans, D. F.
    Southworth, J.
    Smalley, B.
    Jorgensen, U. G.
    Dominik, M.
    Andersen, M. I.
    Bozza, V.
    Bramich, D. M.
    Burgdorf, M. J.
    Ciceri, S.
    D'Ago, G.
    Jaimes, R. Figuera
    Gu, S. -H.
    Hinse, T. C.
    Henning, Th.
    Hundertmark, M.
    Kains, N.
    Kerins, E.
    Korhonen, H.
    Kokotanekova, R.
    Kuffmeier, M.
    Longa-Pena, P.
    Mancini, L.
    MacKenzie, J.
    Popovas, A.
    Rabus, M.
    Rahvar, S.
    Sajadian, S.
    Snodgrass, C.
    Skottfelt, J.
    Surdej, J.
    Tronsgaard, R.
    Unda-Sanzana, E.
    von Essen, C.
    Wang, Yi-Bo
    Wertz, O.
    ASTRONOMY & ASTROPHYSICS, 2018, 610
  • [50] High-Resolution Ugtrasonic Spectrometer Using Digital Signal Processing
    David R. Daughton
    Norbert Mulders
    Journal of Low Temperature Physics, 2004, 134 : 413 - 418