DeepPhospho accelerates DIA phosphoproteome profiling through in silico library generation

被引:45
作者
Lou, Ronghui [1 ,2 ,3 ]
Liu, Weizhen [4 ]
Li, Rongjie [4 ]
Li, Shanshan [1 ]
He, Xuming [4 ,5 ]
Shui, Wenqing [1 ,2 ]
机构
[1] ShanghaiTech Univ, iHuman Inst, Shanghai 201210, Peoples R China
[2] ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[5] Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
VIVO;
D O I
10.1038/s41467-021-26979-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The coverage and throughput of data-independent acquisition (DIA)-based phosphoproteomics is limited by its dependence on experimental spectral libraries. Here the authors develop a DIA workflow based on in silico spectral libraries generated by a novel deep neural network to expand phosphoproteome coverage. Phosphoproteomics integrating data-independent acquisition (DIA) enables deep phosphoproteome profiling with improved quantification reproducibility and accuracy compared to data-dependent acquisition (DDA)-based phosphoproteomics. DIA data mining heavily relies on a spectral library that in most cases is built on DDA analysis of the same sample. Construction of this project-specific DDA library impairs the analytical throughput, limits the proteome coverage, and increases the sample size for DIA phosphoproteomics. Herein we introduce a deep neural network, DeepPhospho, which conceptually differs from previous deep learning models to achieve accurate predictions of LC-MS/MS data for phosphopeptides. By leveraging in silico libraries generated by DeepPhospho, we establish a DIA workflow for phosphoproteome profiling which involves DIA data acquisition and data mining with DeepPhospho predicted libraries, thus circumventing the need of DDA library construction. Our DeepPhospho-empowered workflow substantially expands the phosphoproteome coverage while maintaining high quantification performance, which leads to the discovery of more signaling pathways and regulated kinases in an EGF signaling study than the DDA library-based approach. DeepPhospho is provided as a web server as well as an offline app to facilitate user access to model training, predictions and library generation.
引用
收藏
页数:15
相关论文
共 45 条
  • [1] Long short-term memory
    Hochreiter, S
    Schmidhuber, J
    [J]. NEURAL COMPUTATION, 1997, 9 (08) : 1735 - 1780
  • [2] Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries
    Bekker-Jensen, Dorte B.
    Bernhardt, Oliver M.
    Hogrebe, Alexander
    Martinez-Val, Ana
    Verbeke, Lynn
    Gandhi, Tejas
    Kelstrup, Christian D.
    Reiter, Lukas
    Olsen, Jesper V.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] The Global Phosphorylation Landscape of SARS-CoV-2 Infection
    Bouhaddou, Mehdi
    Memon, Danish
    Meyer, Bjoern
    White, Kris M.
    Rezelj, Veronica V.
    Marrero, Miguel Correa
    Polacco, Benjamin J.
    Melnyk, James E.
    Ulferts, Svenja
    Kaake, Robyn M.
    Batra, Jyoti
    Richards, Alicia L.
    Stevenson, Erica
    Gordon, David E.
    Rojc, Ajda
    Obernier, Kirsten
    Fabius, Jacqueline M.
    Soucheray, Margaret
    Miorin, Lisa
    Moreno, Elena
    Koh, Cassandra
    Quang Dinh Tran
    Hardy, Alexandra
    Robinot, Remy
    Vallet, Thomas
    Nilsson-Payant, Benjamin E.
    Hernandez-Armenta, Claudia
    Dunham, Alistair
    Weigang, Sebastian
    Knerr, Julian
    Modak, Maya
    Quintero, Diego
    Zhou, Yuan
    Dugourd, Aurelien
    Valdeolivas, Alberto
    Patil, Trupti
    Li, Qiongyu
    Huttenhain, Ruth
    Cakir, Merve
    Muralidharan, Monita
    Kim, Minkyu
    Jang, Gwendolyn
    Tutuncuoglu, Beril
    Hiatt, Joseph
    Guo, Jeffrey Z.
    Xu, Jiewei
    Bouhaddou, Sophia
    Mathy, Christopher J. P.
    Gaulton, Anna
    Manners, Emma J.
    [J]. CELL, 2020, 182 (03) : 685 - +
  • [4] Brown T. B., 2020, Neural Information Processing Systems
  • [5] Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues
    Bruderer, Roland
    Bernhardt, Oliver M.
    Gandhi, Tejas
    Miladinovic, Sasa M.
    Cheng, Lin-Yang
    Messner, Simon
    Ehrenberger, Tobias
    Zanotelli, Vito
    Butscheid, Yulia
    Escher, Claudia
    Vitek, Olga
    Rinner, Oliver
    Reiter, Lukas
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2015, 14 (05) : 1400 - 1410
  • [6] MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
    Cox, Juergen
    Mann, Matthias
    [J]. NATURE BIOTECHNOLOGY, 2008, 26 (12) : 1367 - 1372
  • [7] The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition
    Deutsch, Eric W.
    Csordas, Attila
    Sun, Zhi
    Jarnuczak, Andrew
    Perez-Riverol, Yasset
    Ternent, Tobias
    Campbell, David S.
    Bernal-Llinares, Manuel
    Okuda, Shujiro
    Kawano, Shin
    Moritz, Robert L.
    Carver, Jeremy J.
    Wang, Mingxun
    Ishihama, Yasushi
    Bandeira, Nuno
    Hermjakob, Henning
    Vizcaino, Juan Antonio
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) : D1100 - D1106
  • [8] Devlin J, 2018, ARXIV
  • [9] The Reactome Pathway Knowledgebase
    Fabregat, Antonio
    Jupe, Steven
    Matthews, Lisa
    Sidiropoulos, Konstantinos
    Gillespie, Marc
    Garapati, Phani
    Haw, Robin
    Jassal, Bijay
    Korninger, Florian
    May, Bruce
    Milacic, Marija
    Roca, Corina Duenas
    Rothfels, Karen
    Sevilla, Cristoffer
    Shamovsky, Veronica
    Shorser, Solomon
    Varusai, Thawfeek
    Viteri, Guilherme
    Weiser, Joel
    Wu, Guanming
    Stein, Lincoln
    Hermjakob, Henning
    D'Eustachio, Peter
    [J]. NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) : D649 - D655
  • [10] Updated MS2PIP web server delivers fast and accurate MS2 peak intensity prediction for multiple fragmentation methods, instruments and labeling techniques
    Gabriels, Ralf
    Martens, Lennart
    Degroeve, Sven
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (W1) : W295 - W299