Loss of Hall conductivity quantization in a non-Hermitian quantum anomalous Hall insulator

被引:62
作者
Philip, Timothy M. [1 ,2 ]
Hirsbrunner, Mark R. [2 ,3 ]
Gilbert, Matthew J. [1 ,2 ,4 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Micro & Nanotechnol Lab, 208 N Wright St, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[4] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
TOPOLOGICAL INSULATORS; EXCEPTIONAL POINTS; RESISTANCE; SURFACE; BULK;
D O I
10.1103/PhysRevB.98.155430
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent work has extended topological band theory to open, non-Hermitian Hamiltonians, yet little is understood about how non-Hermiticity alters the topological quantization of associated observables. We address this problem by studying the quantum anomalous Hall effect (QAHE) generated in the Dirac surface states of a three-dimensional time-reversal-invariant topological insulator (TI) that is proximity coupled to a metallic ferromagnet. By constructing a contact self-energy for the ferromagnet, we show that in addition to generating a mass gap in the surface spectrum, the ferromagnet can introduce a non-Hermitian broadening term, which can obscure the mass gap in the spectral function. We calculate the Hall conductivity for the effective non-Hermitian Hamiltonian describing the heterostructure and show that it is no longer quantized despite being classified as a Chern insulator based on non-Hermitian topological band theory. Our results indicate that the QAHE will be challenging to experimentally observe in ferromagnet-TI heterostructures due to the finite lifetime of quasiparticles at the interface.
引用
收藏
页数:7
相关论文
共 35 条
[1]   Emergent quantum confinement at topological insulator surfaces [J].
Bahramy, M. S. ;
King, P. D. C. ;
de la Torre, A. ;
Chang, J. ;
Shi, M. ;
Patthey, L. ;
Balakrishnan, G. ;
Hofmann, Ph. ;
Arita, R. ;
Nagaosa, N. ;
Baumberger, F. .
NATURE COMMUNICATIONS, 2012, 3
[2]   An efficient magnetic tight-binding method for transition metals and alloys [J].
Barreteau, Cyrille ;
Spanjaard, Daniel ;
Desjonqueres, Marie-Catherine .
COMPTES RENDUS PHYSIQUE, 2016, 17 (3-4) :406-429
[3]   BAND-STRUCTURE AND FERMI-SURFACE OF HCP FERROMAGNETIC COBALT [J].
BATALLAN, F ;
ROSENMAN, I ;
SOMMERS, CB .
PHYSICAL REVIEW B, 1975, 11 (01) :545-557
[4]  
Bernevig B. A., 2013, Topological Insulators and Topological Superconductors
[5]   Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field [J].
Bestwick, A. J. ;
Fox, E. J. ;
Kou, Xufeng ;
Pan, Lei ;
Wang, Kang L. ;
Goldhaber-Gordon, D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (18)
[6]  
Bruus H., 2004, Many-Body Quantum Theory in Condensed Matter Physics
[7]   Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges [J].
Cerjan, Alexander ;
Xiao, Meng ;
Yuan, Luqi ;
Fan, Shanhui .
PHYSICAL REVIEW B, 2018, 97 (07)
[8]   Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J].
Chang, Cui-Zu ;
Zhang, Jinsong ;
Feng, Xiao ;
Shen, Jie ;
Zhang, Zuocheng ;
Guo, Minghua ;
Li, Kang ;
Ou, Yunbo ;
Wei, Pang ;
Wang, Li-Li ;
Ji, Zhong-Qing ;
Feng, Yang ;
Ji, Shuaihua ;
Chen, Xi ;
Jia, Jinfeng ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng ;
He, Ke ;
Wang, Yayu ;
Lu, Li ;
Ma, Xu-Cun ;
Xue, Qi-Kun .
SCIENCE, 2013, 340 (6129) :167-170
[9]  
Cullity D., 2009, Introduction to Magnetic Materials, V2nd
[10]   Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect [J].
Fox, E. J. ;
Rosen, I. T. ;
Yang, Yanfei ;
Jones, George R. ;
Elmquist, Randolph E. ;
Kou, Xufeng ;
Pan, Lei ;
Wang, Kang L. ;
Goldhaber-Gordon, D. .
PHYSICAL REVIEW B, 2018, 98 (07)