MULTISPECTRAL IMAGE COMPRESSION BY CLUSTER-ADAPTIVE SUBSPACE REPRESENTATION

被引:14
作者
Shen, Hui-Liang [1 ]
Li, Ke [1 ]
Xin, John H. [2 ]
机构
[1] Zhejiang Univ, Dept Informat & Elect Engn, Hangzhou 310027, Peoples R China
[2] Hong Kong Polytech Univ, Inst Text & Clothing, Hong Kong, Peoples R China
来源
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING | 2010年
基金
中国国家自然科学基金;
关键词
Multispectral image; compression; clustering; PCA; LDA;
D O I
10.1109/ICIP.2010.5652058
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multispectral imaging has attracted much interest in color science area, for its ability in providing much more spectral information than 3-channel color images. Due to the huge data volume, it is necessary to compress multispectral images for efficient transmission. This paper proposes a framework for spectral compression of multispectral image by using clusteradaptive subspaces representation. In the framework, multispectral image is initially segmented by hierarchical analysis of the transform coefficients in the global subspace, and then ambiguous pixels are identified and classified into proper clusters based on linear discriminant analysis. The dimensionality of each adaptive subspace is determined by specified reconstruction error level, followed by further cluster splitting if necessary. The efficiency of the proposed method is verified by experiments on real multispectral images.
引用
收藏
页码:521 / 524
页数:4
相关论文
共 9 条
[1]  
[Anonymous], 2000, Pattern Classification
[2]   Low-complexity compression of multispectral images based on classified transform coding [J].
Cagnazzo, Marco ;
Cicala, Luca ;
Poggi, Giovanni ;
Verdoliva, Luisa .
SIGNAL PROCESSING-IMAGE COMMUNICATION, 2006, 21 (10) :850-861
[3]   Multispectral image compression using eigenregion-based segmentation [J].
Chang, L .
PATTERN RECOGNITION, 2004, 37 (06) :1233-1243
[4]  
Cheng HD, 2000, IEEE T IMAGE PROCESS, V9, P2071, DOI 10.1109/83.887975
[5]   Compression of multispectral remote sensing images using clustering and spectral reduction [J].
Kaarna, A ;
Zemcik, P ;
Kälviäinen, H ;
Parkkinen, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (02) :1073-1082
[6]  
MALONEY L, 1983, J OPT SOC AM A, V3, P1673
[7]   Reflectance reconstruction for multispectral imaging by adaptive Wiener estimation [J].
Shen, Hui-Liang ;
Cai, Pu-Qing ;
Shao, Si-Jie ;
Xin, John H. .
OPTICS EXPRESS, 2007, 15 (23) :15545-15554
[8]   Density estimation for color images [J].
Stokman, HMG ;
Gevers, T .
JOURNAL OF ELECTRONIC IMAGING, 2001, 10 (01) :221-227
[9]   Multispectral image compression for high fidelity colorimetric and spectral reproduction [J].
Yu, Shanshan ;
Murakami, Yuri ;
Obi, Takashi ;
Yamaguchi, Masahiro ;
Ohyama, Nagaaki .
JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2006, 50 (01) :64-72