Planar cubic G1 interpolatory splines with small strain energy

被引:22
|
作者
Jaklic, Gasper [1 ,2 ,3 ]
Zagar, Emil [1 ,2 ]
机构
[1] Univ Ljubljana, FMF, Ljubljana, Slovenia
[2] Univ Ljubljana, IMFM, Ljubljana, Slovenia
[3] Univ Primorska, PINT, Ljubljana, Slovenia
关键词
Hermite interpolation; Spline curve; Minimization; Strain energy; GEOMETRIC INTERPOLATION; HERMITE INTERPOLATION; POLYNOMIAL CURVES; SMOOTHNESS; ORDER;
D O I
10.1016/j.cam.2010.11.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a classical problem of the construction of a cubic G(1) continuous interpolatory spline curve is considered. The only data prescribed are interpolation points, while tangent directions are unknown. They are constructed automatically in such a way that a particular minimization of the strain energy of the spline curve is applied. The resulting spline curve is constructed locally and is regular, cusp-, loop- and fold-free. Numerical examples demonstrate that it is satisfactory as far as the shape of the curve is concerned. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2758 / 2765
页数:8
相关论文
共 50 条
  • [1] Hermite and Lagrange interpolation in Rd by G1 cubic splines with small strain energy
    Jaklic, Gasper
    Kanduc, Tadej
    JOURNAL OF NUMERICAL MATHEMATICS, 2015, 23 (03) : 257 - 270
  • [2] Geometric interpolation by planar cubic G1 splines
    Kozak, Jernej
    Krajnc, Marjetka
    BIT NUMERICAL MATHEMATICS, 2007, 47 (03) : 547 - 563
  • [3] Geometric interpolation by planar cubic G1 splines
    Jernej Kozak
    Marjetka Krajnc
    BIT Numerical Mathematics, 2007, 47 : 547 - 563
  • [4] Geometric Hermite interpolation by cubic G1 splines
    Krajnc, Marjeta
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (07) : 2614 - 2626
  • [5] Length and curvature variation energy minimizing planar cubic G1 Hermite interpolation curve
    Li, Juncheng
    Zhang, Li
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 60 - 64
  • [6] Cubic polynomial A-splines:: G1, G2 and inflection point control
    Rodriguez, J. Daza
    Tovar, F.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2006, 73 (1-4) : 133 - 141
  • [7] G1 rational blend interpolatory schemes: A comparative study
    Boschiroli, Maria
    Fuenfzig, Christoph
    Romani, Lucia
    Albrecht, Gudrun
    GRAPHICAL MODELS, 2012, 74 : 29 - 49
  • [8] Interpolation of G1 Hermite data by C1 cubic-like sparse Pythagorean hodograph splines
    Ait-Haddou, Rachid
    Beccari, Carolina Vittoria
    Mazure, Marie-Laurence
    COMPUTER AIDED GEOMETRIC DESIGN, 2020, 79
  • [9] Planar cubic G1 and quintic G2 Hermite interpolations via curvature variation minimization
    Lu, Lizheng
    Jiang, Chengkai
    Hu, Qianqian
    COMPUTERS & GRAPHICS-UK, 2018, 70 : 92 - 98
  • [10] A note on approximation of discrete data by G1 arc splines
    Yong, JH
    Hu, SM
    Sun, JG
    COMPUTER-AIDED DESIGN, 1999, 31 (14) : 911 - 915