A Double Swarm Methodology for Parameter Estimation in Oscillating Gene Regulatory Networks

被引:0
作者
Nobile, Marco S. [1 ,2 ]
Iba, Hitoshi [3 ]
机构
[1] Univ Milano Bicocca, Dept Comp Sci Syst & Commun, I-20126 Milan, Italy
[2] SYSBIO Ctr Syst Biol, Milan, Italy
[3] Univ Tokyo, Dept Frontier Informat, Chiba 2778561, Japan
来源
2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2015年
关键词
Synthetic Biology; Gene Regulation; Parameter Estimation; Particle Swarm Optimization; Fast Fourier Transform; S-SYSTEM; OPTIMIZATION; ALGORITHMS; INFERENCE; MODELS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
systems are mathematical models based on the power-law formalism, which are widely employed for the investigation of Gene Regulatory Networks (GRNs). Because of their complex dynamics - characterized by multi-modality and non-linearity - the parameterization of S-systems is far from straight-forward, demanding global optimization techniques. The problem of parameter estimation of S-systems is further complicated when the desired dynamics is characterized by oscillations. In this work, we describe a novel methodology based on Particle Swarm Optimization for the automatic parameterization of oscillating S-systems. In this methodology, two swarms perform independent optimizations, and cooperate by periodically exchanging the best particles. The two swarms exploit two different fitness functions: a traditional point-to-point distance, and a spectra-based fitness function. We show that this cooperative approach allows the double swarm to outperform the common methodology, based on a single swarm exploiting a single fitness function. We demonstrate the effectiveness of our method using a GRN of five genes, performing tests of increasing complexity, up to the simultaneous inference of 17 parameters.
引用
收藏
页码:2376 / 2383
页数:8
相关论文
共 23 条
  • [1] [Anonymous], 1976, BIOCH SYSTEMS ANAL S
  • [2] Synthetic biology
    Benner, SA
    Sismour, AM
    [J]. NATURE REVIEWS GENETICS, 2005, 6 (07) : 533 - 543
  • [3] Besozzi D, 2009, LECT NOTES COMPUT SC, V5483, P116, DOI 10.1007/978-3-642-01184-9_11
  • [4] Autonomous agent response learning by a multi-species particle swarm optimization
    Chow, CK
    Tsui, HT
    [J]. CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 778 - 785
  • [5] Coello CAC, 2002, IEEE C EVOL COMPUTAT, P1051, DOI 10.1109/CEC.2002.1004388
  • [6] AN ALGORITHM FOR MACHINE CALCULATION OF COMPLEX FOURIER SERIES
    COOLEY, JW
    TUKEY, JW
    [J]. MATHEMATICS OF COMPUTATION, 1965, 19 (90) : 297 - &
  • [7] Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies
    Draeger, Andreas
    Kronfeld, Marcel
    Ziller, Michael J.
    Supper, Jochen
    Planatscher, Hannes
    Magnus, Jorgen B.
    Oldiges, Marco
    Kohlbacher, Oliver
    Zell, Andreas
    [J]. BMC SYSTEMS BIOLOGY, 2009, 3
  • [8] A synthetic oscillatory network of transcriptional regulators
    Elowitz, MB
    Leibler, S
    [J]. NATURE, 2000, 403 (6767) : 335 - 338
  • [9] Parameter estimation using Simulated Annealing for S-system models of biochemical networks
    Gonzalez, Orland R.
    Kueper, Christoph
    Jung, Kirsten
    Naval, Prospero C., Jr.
    Mendoza, Eduardo
    [J]. BIOINFORMATICS, 2007, 23 (04) : 480 - 486
  • [10] Synthetic biology - putting engineering into biology
    Heinemann, Matthias
    Panke, Sven
    [J]. BIOINFORMATICS, 2006, 22 (22) : 2790 - 2799