Efficient Bayesian mixed-model analysis increases association power in large cohorts

被引:904
作者
Loh, Po-Ru [1 ,2 ]
Tucker, George [1 ,3 ,4 ]
Bulik-Sullivan, Brendan K. [2 ,5 ]
Vilhjalmsson, Bjarni J. [1 ,2 ]
Finucane, Hilary K. [3 ]
Salem, Rany M. [2 ,6 ]
Chasman, Daniel I. [7 ]
Ridker, Paul M. [7 ]
Neale, Benjamin M. [2 ,5 ]
Berger, Bonnie [3 ,4 ]
Patterson, Nick [2 ]
Price, Alkes L. [1 ,2 ,8 ]
机构
[1] Harvard IH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[2] Broad Inst Harvard & MIT, Progrram Med & Populat Genet, Cambridge, MA USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] Comp Sci & Artificial Intelligence Lab, Cambridge, MA USA
[5] Massachusetts Gen Hosp, Analyt & Translat Genet Unit, Boston, MA 02114 USA
[6] Childrens Hosp Boston, Dept Endocrinol, Boston, MA USA
[7] Brigham & Womens Hosp, Div Prevent Med, Boston, MA 02115 USA
[8] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
GENOME-WIDE ASSOCIATION; COMPLEX TRAITS; STRUCTURED POPULATIONS; GENETIC ASSOCIATION; COMMON SNPS; PREDICTION; STRATIFICATION; REGRESSION; ALGORITHM; INFERENCE;
D O I
10.1038/ng.3190
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Linear mixed models are a powerful statistical tool for identifying genetic associations and avoiding confounding. However, existing methods are computationally intractable in large cohorts and may not optimize power. All existing methods require time cost O(MN2) (where N is the number of samples and M is the number of SNPs) and implicitly assume an infinitesimal genetic architecture in which effect sizes are normally distributed, which can limit power. Here we present a far more efficient mixed-model association method, BOLT-LMM, which requires only a small number of O(MN) time iterations and increases power by modeling more realistic, non-infinitesimal genetic architectures via a Bayesian mixture prior on marker effect sizes. We applied BOLT-LMM to 9 quantitative traits in 23,294 samples from the Women's Genome Health Study (WGHS) and observed significant increases in power, consistent with simulations. Theory and simulations show that the boost in power increases with cohort size, making BOLT-LMM appealing for genome-wide association studies in large cohorts.
引用
收藏
页码:284 / +
页数:10
相关论文
共 48 条
  • [1] Genomewide rapid association using mixed model and regression: A fast and simple method for genomewide pedigree-based quantitative trait loci association analysis
    Aulchenko, Yurii S.
    de Koning, Dirk-Jan
    Haley, Chris
    [J]. GENETICS, 2007, 177 (01) : 577 - 585
  • [2] GenABEL: an R library for genome-wide association analysis
    Aulchenko, Yurii S.
    Ripke, Stephan
    Isaacs, Aaron
    Van Duijn, Cornelia M.
    [J]. BIOINFORMATICS, 2007, 23 (10) : 1294 - 1296
  • [3] Boyd S., 2004, CONVEX OPTIMIZATION
  • [4] LD Score regression distinguishes confounding from polygenicity in genome-wide association studies
    Bulik-Sullivan, Brendan K.
    Loh, Po-Ru
    Finucane, Hilary K.
    Ripke, Stephan
    Yang, Jian
    Patterson, Nick
    Daly, Mark J.
    Price, Alkes L.
    Neale, Benjamin M.
    [J]. NATURE GENETICS, 2015, 47 (03) : 291 - +
  • [5] Demonstrating stratification in a European American population
    Campbell, CD
    Ogburn, EL
    Lunetta, KL
    Lyon, HN
    Freedman, ML
    Groop, LC
    Altshuler, D
    Ardlie, KG
    Hirschhorn, JN
    [J]. NATURE GENETICS, 2005, 37 (08) : 868 - 872
  • [6] Scalable Variational Inference for Bayesian Variable Selection in Regression, and Its Accuracy in Genetic Association Studies
    Carbonetto, Peter
    Stephens, Matthew
    [J]. BAYESIAN ANALYSIS, 2012, 7 (01): : 73 - 107
  • [7] Family-based association tests for genomewide association scans
    Chen, Wei-Min
    Abecasis, Goncalo R.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 81 (05) : 913 - 926
  • [8] A Generalized Family-Based Association Test for Dichotomous Traits
    Chen, Wei-Min
    Manichaikul, Ani
    Rich, Stephen S.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2009, 85 (03) : 364 - 376
  • [9] Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding
    de los Campos, Gustavo
    Hickey, John M.
    Pong-Wong, Ricardo
    Daetwyler, Hans D.
    Calus, Mario P. L.
    [J]. GENETICS, 2013, 193 (02) : 327 - +
  • [10] Genomic control for association studies
    Devlin, B
    Roeder, K
    [J]. BIOMETRICS, 1999, 55 (04) : 997 - 1004