Inducible expression eliminates the fitness cost of vancomycin resistance in enterococci

被引:94
作者
Foucault, Marie-Laure [1 ]
Depardieu, Florence [1 ]
Courvalin, Patrice [1 ]
Grillot-Courvalin, Catherine [1 ]
机构
[1] Inst Pasteur, Unite Agents Antibacteriens, F-75724 Paris 15, France
关键词
glycopeptide resistance; biological cost; Enterococcus; transposon; two component regulatory system; MULTIPLE ANTIBIOTIC-RESISTANCE; GRAM-POSITIVE BACTERIA; GLYCOPEPTIDE RESISTANCE; STAPHYLOCOCCUS-AUREUS; ESCHERICHIA-COLI; GNOTOBIOTIC MICE; PEPTIDOGLYCAN PRECURSORS; TRANSPOSON TN1549; FAECIUM; ACQUISITION;
D O I
10.1073/pnas.1006855107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Inducible vancomycin resistance in enterococci is due to a sophisticated mechanism that combines synthesis of cell wall peptidoglycan precursors with low affinity for glycopeptides and elimination of the normal target precursors. Although this dual mechanism, which involves seven genes organized in two operons, is predicted to have a high fitness cost, resistant enterococci have disseminated worldwide. We have evaluated the biological cost of VanB-type resistance due to acquisition of conjugative transposon Tn1549 in Enterococcus faecium and Enterococcus faecalis. Because fitness was dependent on the integration site of Tn1549, an isogenic set of E. faecalis was constructed to determine the cost of inducible or constitutive expression of resistance or of carriage of Tn1549. A luciferase gene was inserted in the integrase gene of the transposon to allow differential quantification of the strains in cocultures and in the digestive tract of gnotobiotic mice. Both in vitro and in vivo, carriage of inactivated or inducible Tn1549 had no cost for the host in the absence of induction by vancomycin. In contrast, induced or constitutively resistant strains not only had reduced fitness but were severely impaired in colonization ability and dissemination among mice. These data indicate that tight regulation of resistance expression drastically reduces the biological cost associated with vancomycin resistance in Enterococcus spp. and accounts for the widespread dissemination of these strains. Our findings are in agreement with the observation that regulation of expression is common in horizontally acquired resistance and represents an efficient evolutionary pathway for resistance determinants to become selectively neutral.
引用
收藏
页码:16964 / 16969
页数:6
相关论文
共 30 条
[1]   Antibiotic resistance and its cost: is it possible to reverse resistance? [J].
Andersson, Dan I. ;
Hughes, Diarmaid .
NATURE REVIEWS MICROBIOLOGY, 2010, 8 (04) :260-271
[2]   The biological cost of antibiotic resistance [J].
Andersson, DI ;
Levin, BR .
CURRENT OPINION IN MICROBIOLOGY, 1999, 2 (05) :489-493
[3]   Quantitative analysis of the metabolism of soluble cytoplasmic peptidoglycan precursors of glycopeptide-resistant enterococci [J].
Arthur, M ;
Depardieu, F ;
Reynolds, P ;
Courvalin, P .
MOLECULAR MICROBIOLOGY, 1996, 21 (01) :33-44
[4]   Requirement of the VanY and VanX D,D-peptidases for glycopeptide resistance in enterococci [J].
Arthur, M ;
Depardieu, F ;
Cabanié, L ;
Reynolds, P ;
Courvalin, P .
MOLECULAR MICROBIOLOGY, 1998, 30 (04) :819-830
[5]   CHARACTERIZATION OF TN1546, A TN3-RELATED TRANSPOSON CONFERRING GLYCOPEPTIDE RESISTANCE BY SYNTHESIS OF DEPSIPEPTIDE PEPTIDOGLYCAN PRECURSORS IN ENTEROCOCCUS-FAECIUM BM4147 [J].
ARTHUR, M ;
MOLINAS, C ;
DEPARDIEU, F ;
COURVALIN, P .
JOURNAL OF BACTERIOLOGY, 1993, 175 (01) :117-127
[6]   The cost of antibiotic resistance from a bacterial perspective [J].
Björkman, J ;
Andersson, DI .
DRUG RESISTANCE UPDATES, 2000, 3 (04) :237-245
[7]   Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance [J].
Björkman, J ;
Nagaev, I ;
Berg, OG ;
Hughes, D ;
Andersson, DI .
SCIENCE, 2000, 287 (5457) :1479-1482
[8]   Thermostable red and green light-producing firefly luciferase mutants for bioluminescent reporter applications [J].
Branchini, Bruce R. ;
Ablamsky, Danielle M. ;
Murtiashaw, Martha H. ;
Uzasci, Lerna ;
Fraga, Hugo ;
Southworth, Tara L. .
ANALYTICAL BIOCHEMISTRY, 2007, 361 (02) :253-262
[9]   Vancomycin-resistant enterococci [J].
Cetinkaya, Y ;
Falk, P ;
Mayhall, CG .
CLINICAL MICROBIOLOGY REVIEWS, 2000, 13 (04) :686-+
[10]   Binding sites of VanRB and σ70 RNA polymerase in the vanB vancomycin resistance operon of Enterococcus faecium BM4524 [J].
Depardieu, F ;
Courvalin, P ;
Kolb, A .
MOLECULAR MICROBIOLOGY, 2005, 57 (02) :550-564