Optimal pairs trading with dynamic mean-variance objective

被引:5
作者
Zhu, Dong-Mei [1 ]
Gu, Jia-Wen [2 ]
Yu, Feng-Hui [3 ]
Siu, Tak-Kuen [4 ]
Ching, Wai-Ki [5 ]
机构
[1] Southeast Univ, Sch Econ & Management, Nanjing, Jiangsu, Peoples R China
[2] Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China
[3] ETH, RiskLab & Dept Math, Zurich, Switzerland
[4] Macquarie Univ, Macquarie Business Sch, Dept Actuarial Studies & Business Analyt, Sydney, NSW 2109, Australia
[5] Univ Hong Kong, Dept Math, Adv Modeling & Appl Comp Lab, Pokfulam Rd,Hughes Hall,Wollaston Rd,Hong Kong, Cambridge, England
基金
中国国家自然科学基金;
关键词
Dynamic mean-variance (MV); Ornstein-Uhlenbeck (OU); Pairs trading; Time inconsistency; PORTFOLIO SELECTION; CONSUMPTION;
D O I
10.1007/s00186-021-00751-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Pairs trading is a typical example of a convergence trading strategy. Investors buy relatively under-priced assets simultaneously, and sell relatively over-priced assets to exploit temporary mispricing. This study examines optimal pairs trading strategies under symmetric and non-symmetric trading constraints. Under the assumption that the price spread of a pair of correlated securities follows a mean-reverting Ornstein-Uhlenbeck(OU) process, analytical trading strategies are obtained under a mean-variance(MV) framework. Model estimation and empirical studies on trading strategies have been conducted using data on pairs of stocks and futures traded on China's securities market. These results indicate that pairs trading strategies have fairly good performance.
引用
收藏
页码:145 / 168
页数:24
相关论文
共 35 条
  • [1] [Anonymous], 2010, Working Paper
  • [2] Dynamic Mean-Variance Asset Allocation
    Basak, Suleyman
    Chabakauri, Georgy
    [J]. REVIEW OF FINANCIAL STUDIES, 2010, 23 (08) : 2970 - 3016
  • [3] Continuous-time mean-variance portfolio selection with bankruptcy prohibition
    Bielecki, TR
    Jin, HQ
    Pliska, SR
    Zhou, XY
    [J]. MATHEMATICAL FINANCE, 2005, 15 (02) : 213 - 244
  • [4] MEAN-VARIANCE PORTFOLIO OPTIMIZATION WITH STATE-DEPENDENT RISK AVERSION
    Bjoerk, Tomas
    Murgoci, Agatha
    Zhou, Xun Yu
    [J]. MATHEMATICAL FINANCE, 2014, 24 (01) : 1 - 24
  • [5] Dynamic cointegrated pairs trading: Mean-variance time-consistent strategies
    Chiu, Mei Choi
    Wong, Hoi Ying
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 : 516 - 534
  • [6] Optimal investment for an insurer with cointegrated assets: CRRA utility
    Chiu, Mei Choi
    Wong, Hoi Ying
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2013, 52 (01) : 52 - 64
  • [7] Time consistent behavioral portfolio policy for dynamic mean-variance formulation
    Cui, Xiangyu
    Li, Xun
    Li, Duan
    Shi, Yun
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2017, 68 (12) : 1647 - 1660
  • [8] Better than pre-commitment mean-variance portfolio allocation strategies: A semi-self-financing Hamilton-Jacobi-Bellman equation approach
    Dang, D. M.
    Forsyth, P. A.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 250 (03) : 827 - 841
  • [9] Do B, 2006, P 2006 FINANCIAL MA, V1, P87
  • [10] Pairs trading
    Elliott, RJ
    Van der Hoek, J
    Malcolm, WP
    [J]. QUANTITATIVE FINANCE, 2005, 5 (03) : 271 - 276