Ionic liquid-derived FeCo alloys encapsulated in nitrogen-doped carbon framework as advanced bifunctional catalysts for rechargeable Zn-air batteries

被引:27
|
作者
Wang, Zhenzhen [1 ,2 ,3 ]
Zhou, Xiaozhuang [4 ]
Jin, Huihui [3 ]
Chen, Ding [3 ]
Zhu, Jiawei [3 ]
Hempelmann, Rolf [1 ,2 ]
Chen, Lei [3 ]
Mu, Shichun [3 ,5 ]
机构
[1] Saarland Univ, Transferctr Sustainable Electrochem, D-66123 Saarbrucken, Germany
[2] KIST Europe, D-66123 Saarbrucken, Germany
[3] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[4] Martin Luther Univ Halle Wittenberg, Fac Nat Sci Chem Phys & Math 2, Inst Chem, Von Danckelmann Pl 4, D-06120 Halle, Germany
[5] Foshan Xianhu Lab, Foshan 528200, Peoples R China
基金
中国国家自然科学基金;
关键词
FeCo alloy; Bimetallic; Ionic liquid; Bifunctional electrocatalyst; Oxygen reduction reaction; Oxygen evolution reaction; Rechargeable Zn-air batteries; OXYGEN REDUCTION; POROUS CARBON; EFFICIENT; ELECTROCATALYST; GRAPHENE; NANOPARTICLES; NANOTUBES; SITES; SULFUR;
D O I
10.1016/j.jallcom.2022.164565
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing bifunctional ORR & OER electrocatalysts with high activity and stability is challenging for practical application of rechargeable Zinc air batteries. Herein, an ionic liquid strategy is proposed for construction of FeCo alloys encapsulated in nitrogen-doped carbon as bifunctional electrocatalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). By taking advantages of the unique properties such as solvent effect and low volatility, ionic liquid serves as solvent to disperse metal ions in the precursor preparation and nitrogen-containing carbon source during pyrolysis. The FeCo alloy nanoparticles encapsulated in the N-doped carbon matrix show a homogeneous distribution with average sizes of 50-100 nm. Such a core-shell structure endows the catalyst with both high ORR and OER activity and robust stability in alkaline environments. Especially, the half-wave potential (E-1/2) for ORR is 0.86 V and the overpotential (E-over) for OER to reach the 10 mAmiddotcm-2 current density is only 280 mV. Furthermore, the obtained bifunctional electrocatalyst also displays high efficiency and great durability when applied in the rechargeable Zn-air battery. The specific capacity and energy density at the discharge current density of 10 mAmiddotcm(-2) reach up to 741.5 mAhmiddotg-1 and 830.1 Wh kg(-1), respectively. It's envisioned that this ultra-facile method would be applicable to synthesize highly efficient catalysts for other energy conversion systems. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Cobalt Nanoparticles Encapsulated in Nitrogen-Doped Carbon Nanotube as Bifunctional-Catalyst for Rechargeable Zn-Air Batteries
    Liu, Yang
    Dong, Peng
    Li, Mian
    Wu, Hao
    Zhang, Chengxu
    Han, Lina
    Zhang, Yingjie
    FRONTIERS IN MATERIALS, 2019, 6
  • [2] Bifunctional catalysts of CoNi nanoparticle-embedded nitrogen-doped carbon nanotubes for rechargeable Zn-air batteries
    Ran, Jiaqi
    Guo, Xiaosong
    Liu, Peitao
    Peng, Shanglong
    Gao, Xiaoping
    Gao, Daqiang
    NANOTECHNOLOGY, 2019, 30 (43)
  • [3] Nitrogen-doped graphitic carbons with encapsulated CoNi bimetallic nanoparticles as bifunctional electrocatalysts for rechargeable Zn-Air batteries
    Yang, Liu
    Wang, Di
    Lv, Yanlong
    Cao, Dapeng
    CARBON, 2019, 144 : 8 - 14
  • [4] Acid Etching Strategy: Optimizing Bifunctional Activities of Metal/Nitrogen-doped Carbon Catalysts for Efficient Rechargeable Zn-Air Batteries
    Li, Wangzu
    Wu, Weixing
    Yu, Luo
    Sun, Jiping
    Xu, Liangpang
    Wang, Ying
    Lu, Qian
    CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (18)
  • [5] A template-directed bifunctional NiSx/nitrogen-doped mesoporous carbon electrocatalyst for rechargeable Zn-air batteries
    Wan, Kai
    Luo, Jiangshui
    Zhang, Xuan
    Zhou, Chen
    Seo, Jin Won
    Subramanian, Palaniappan
    Yan, Jia-wei
    Fransaer, Jan
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (34) : 19889 - 19897
  • [6] FeCo 5 /Nitrogen doped carbon as an efficient bifunctional oxygen electrocatalyst for Zn-Air batteries
    Wang, Jingyu
    Zhang, Tianai
    He, Shengzhi
    Sun, Chunwen
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 965
  • [7] NiFe Alloyed Nanoparticles Encapsulated in Nitrogen Doped Carbon Nanotubes for Bifunctional Electrocatalysis Toward Rechargeable Zn-Air Batteries
    Chen, Yinghuan
    Peng, Jin
    Duan, Wentao
    He, Guoqiang
    Tang, Zhenghua
    CHEMCATCHEM, 2019, 11 (24) : 5994 - 6001
  • [8] In situ integration of CoFe alloy nanoparticles with nitrogen-doped carbon nanotubes as advanced bifunctional cathode catalysts for Zn-air batteries
    Cai, Pingwei
    Hong, Yuan
    Ci, Suqin
    Wen, Zhenhai
    NANOSCALE, 2016, 8 (48) : 20048 - 20055
  • [9] Facile synthesis of cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotubes for use as a highly efficient bifunctional catalyst in rechargeable Zn-Air batteries
    Liu, Yang
    Ji, Depeng
    Li, Mian
    Xiao, Jie
    Dong, Peng
    Zhang, Chengxu
    Han, Lina
    Zhang, Yingjie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 842
  • [10] PtCo nanoalloy embedded nitrogen-doped carbon nanotube for rechargeable Zn-air batteries
    Zhou, Qiusheng
    Song, Minmin
    Tian, Yuan
    Min, Min
    Cui, Shiqiang
    He, Xianying
    Xiong, Chuanyin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 677 : 59 - 67