A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology

被引:355
作者
Iglesias, Juan Eugenio [1 ,2 ]
Insausti, Ricardo [3 ]
Lerma-Usabiaga, Garikoitz [2 ]
Bocchetta, Martina [4 ]
Van Leemput, Koen [5 ,6 ,7 ]
Greve, Douglas N. [5 ,6 ]
van der Kouwe, Andre [5 ,6 ]
Fischl, Bruce [5 ,6 ,8 ]
Caballero-Gaudes, Cesar [2 ]
Paz-Alonso, Pedro M. [2 ]
机构
[1] UCL, Dept Med Phys & Biomed Engn, CMIC, London, England
[2] BCBL Basque Ctr Cognit Brain & Language, Donostia San Sebastian, Spain
[3] Univ Castilla La Mancha, Human Neuroanat Lab, Ciudad Real, Spain
[4] UCL, Inst Neurol, Dept Neurodegenerat Dis, Dementia Res Ctr, London, England
[5] Massachusetts Gen Hosp, Martinos Ctr Biomed Imaging, Boston, MA 02114 USA
[6] Harvard Med Sch, Boston, MA USA
[7] Tech Univ Denmark, Dept Appl Math & Comp Sci, Lyngby, Denmark
[8] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
欧盟地平线“2020”; 美国国家卫生研究院; 欧洲研究理事会; 加拿大健康研究院;
关键词
Thalamus; Atlasing; Histology; Ex-vivo MRI; Segmentation; Bayesian inference; WHOLE-BRAIN SEGMENTATION; MEDIAL TEMPORAL-LOBE; ALZHEIMERS-DISEASE; FUNCTIONAL MRI; AUTOMATIC SEGMENTATION; ADAPTIVE SEGMENTATION; IMAGE REGISTRATION; SHAPE CHANGES; MODEL; CONNECTIVITY;
D O I
10.1016/j.neuroimage.2018.08.012
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The human thalamus is a brain structure that comprises numerous, highly specific nuclei. Since these nuclei are known to have different functions and to be connected to different areas of the cerebral cortex, it is of great interest for the neuroimaging community to study their volume, shape and connectivity in vivo with MRI. In this study, we present a probabilistic atlas of the thalamic nuclei built using ex vivo brain MRI scans and histological data, as well as the application of the atlas to in vivo MRI segmentation. The atlas was built using manual delineation of 26 thalamic nuclei on the serial histology of 12 whole thalami from six autopsy samples, combined with manual segmentations of the whole thalamus and surrounding structures (caudate, putamen, hippocampus, etc.) made on in vivo brain MR data from 39 subjects. The 3D structure of the histological data and corresponding manual segmentations was recovered using the ex vivo MRI as reference frame, and stacks of blockface photographs acquired during the sectioning as intermediate target. The atlas, which was encoded as an adaptive tetrahedral mesh, shows a good agreement with previous histological studies of the thalamus in terms of volumes of representative nuclei. When applied to segmentation of in vivo scans using Bayesian inference, the atlas shows excellent test-retest reliability, robustness to changes in input MRI contrast, and ability to detect differential thalamic effects in subjects with Alzheimer's disease. The probabilistic atlas and companion segmentation tool are publicly available as part of the neuroimaging package FreeSurfer.
引用
收藏
页码:314 / 326
页数:13
相关论文
共 91 条
[1]   Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo [J].
Abivardi, Aslan ;
Bach, Dominik R. .
HUMAN BRAIN MAPPING, 2017, 38 (08) :3927-3940
[2]   Characterizing the human hippocampus in aging and Alzheimer's disease using a computational atlas derived from ex vivo MRI and histology [J].
Adler, Daniel H. ;
Wisse, Laura E. M. ;
Ittyerah, Ranjit ;
Pluta, John B. ;
Ding, Song-Lin ;
Xie, Long ;
Wang, Jiancong ;
Kadivar, Salmon ;
Robinson, John L. ;
Schuck, Theresa ;
Trojanowski, John Q. ;
Grossman, Murray ;
Detre, John A. ;
Elliott, Mark A. ;
Toledo, Jon B. ;
Liu, Weixia ;
Pickup, Stephen ;
Miller, Michael I. ;
Das, Sandhitsu R. ;
Wolk, David A. ;
Yushkevich, Paul A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (16) :4252-4257
[3]   Thalamic pathology and memory loss in early Alzheimer's disease: moving the focus from the medial temporal lobe to Papez circuit [J].
Aggleton, John P. ;
Pralus, Agathe ;
Nelson, Andrew J. D. ;
Hornberger, Michael .
BRAIN, 2016, 139 :1877-1890
[4]   Connectivity derived thalamic segmentation in deep brain stimulation for tremor [J].
Akram, Harith ;
Dayal, Viswas ;
Mahlknecht, Philipp ;
Georgiev, Dejan ;
Hyam, Jonathan ;
Foltynie, Thomas ;
Limousin, Patricia ;
De Vita, Enrico ;
Jahanshahi, Marjan ;
Ashburner, John ;
Behrens, Tim ;
Hariz, Marwan ;
Zrinzo, Ludvic .
NEUROIMAGE-CLINICAL, 2018, 18 :130-142
[5]   Automatic segmentation of thalamus from brain MRI integrating fuzzy clustering and dynamic contours [J].
Amini, L ;
Soltanian-Zadeh, H ;
Lucas, C ;
Gity, M .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (05) :800-811
[6]   BigBrain: An Ultrahigh-Resolution 3D Human Brain Model [J].
Amunts, Katrin ;
Lepage, Claude ;
Borgeat, Louis ;
Mohlberg, Hartmut ;
Dickscheid, Timo ;
Rousseau, Marc-Etienne ;
Bludau, Sebastian ;
Bazin, Pierre-Louis ;
Lewis, Lindsay B. ;
Oros-Peusquens, Ana-Maria ;
Shah, Nadim J. ;
Lippert, Thomas ;
Zilles, Karl ;
Evans, Alan C. .
SCIENCE, 2013, 340 (6139) :1472-1475
[7]   THALAMIC ABNORMALITIES IN SCHIZOPHRENIA VISUALIZED THROUGH MAGNETIC-RESONANCE IMAGE AVERAGING [J].
ANDREASEN, NC ;
ARNDT, S ;
SWAYZE, V ;
CIZADLO, T ;
FLAUM, M ;
OLEARY, D ;
EHRHARDT, JC ;
YUH, WTC .
SCIENCE, 1994, 266 (5183) :294-298
[8]  
[Anonymous], 2013, Decision forests for computer vision and medical image analysis
[9]   Inhibition of subliminally primed responses is mediated by the caudate and thalamus: evidence from functional MRI and Huntington's disease [J].
Aron, AR ;
Schlaghecken, F ;
Fletcher, PC ;
Bullmore, ET ;
Eimer, M ;
Barker, R ;
Sahakian, BJ ;
Robbins, TW .
BRAIN, 2003, 126 :713-723
[10]  
Ashburner J, 2000, HUM BRAIN MAPP, V9, P212, DOI 10.1002/(SICI)1097-0193(200004)9:4<212::AID-HBM3>3.0.CO