Adaptive Inference for Multi-Stage Survey Data

被引:3
作者
Al-Zou'bi, Loai Mahmoud [1 ]
Clark, Robert Graham [1 ]
Steel, David G. [1 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Ctr Stat & Survey Methodol, Wollongong, NSW 2522, Australia
关键词
Adaptive estimation; Cluster sampling; Huber-White variance estimator; Multi-level models; Variance components; LIKELIHOOD RATIO TESTS; SAMPLE; ESTIMATORS; DESIGNS;
D O I
10.1080/03610918.2010.493273
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multi-level models can be used to account for clustering in data from multi-stage surveys. In some cases, the intraclass correlation may be close to zero, so that it may seem reasonable to ignore clustering and fit a single-level model. This article proposes several adaptive strategies for allowing for clustering in regression analysis of multi-stage survey data. The approach is based on testing whether the PSU-level variance component is zero. If this hypothesis is retained, then variance estimates are calculated ignoring clustering; otherwise, clustering is reflected in variance estimation. A simple simulation study is used to evaluate the various procedures.
引用
收藏
页码:1334 / 1350
页数:17
相关论文
共 29 条
  • [1] ALZOUBI LM, 2009, 0109 U WOLL
  • [2] [Anonymous], 1965, Survey sampling
  • [3] [Anonymous], 2007, Linear Mixed Models: A Practical Guide Using Statistical Software
  • [4] Clark RG, 2002, INT STAT REV, V70, P289, DOI 10.1111/j.1751-5823.2002.tb00364.x
  • [5] Cochran W. G., 1977, SAMPLING TECHNIQUES
  • [6] THE INTRACLASS CORRELATION-COEFFICIENT - DISTRIBUTION-FREE DEFINITION AND TEST
    COMMENGES, D
    JACQMIN, H
    [J]. BIOMETRICS, 1994, 50 (02) : 517 - 526
  • [7] Diggle Peter, 2002, Analysis of longitudinal data
  • [8] The Effective Sample Size and an Alternative Small-Sample Degrees-of-Freedom Method
    Faes, Christel
    Molenberghs, Geert
    Aerts, Marc
    Verbeke, Geert
    Kenward, Michael G.
    [J]. AMERICAN STATISTICIAN, 2009, 63 (04) : 389 - 399
  • [9] Goldstein H., 2011, MULTILEVEL STAT MODE
  • [10] Bayesian model averaging: A tutorial
    Hoeting, JA
    Madigan, D
    Raftery, AE
    Volinsky, CT
    [J]. STATISTICAL SCIENCE, 1999, 14 (04) : 382 - 401