Riesz transform on manifolds and heat kernel regularity

被引:183
作者
Auscher, P
Coulhon, T
Duong, XT
Hofmann, S
机构
[1] Univ Paris 11, F-91405 Orsay, France
[2] CNRS, UMR 8628, Dept Math, F-91405 Orsay, France
[3] Univ Cergy Pontoise, F-95302 Cergy Pontoise, France
[4] CNRS, UMR 8088, Dept Math, F-95302 Cergy Pontoise, France
[5] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
[6] Univ Missouri, Dept Math, Columbia, MO 65201 USA
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2004年 / 37卷 / 06期
关键词
D O I
10.1016/j.ansens.2004.10.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One considers the class of complete non-compact Riemannian manifolds whose heat kernel satisfies Gaussian estimates from above and below. One shows that the Riesz transform is L-P bounded on such a manifold, for p ranging in an open interval above 2, if and only if the gradient of the heat kernel satisfies a certain L-P estimate in the same interval of p's. (c) 2004 Elsevier SAS.
引用
收藏
页码:911 / 957
页数:47
相关论文
共 101 条
[1]   AN APPLICATION OF HOMOGENIZATION THEORY TO HARMONIC-ANALYSIS - HARNACK INEQUALITIES AND RIESZ TRANSFORMS ON LIE-GROUPS OF POLYNOMIAL-GROWTH [J].
ALEXOPOULOS, G .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1992, 44 (04) :691-727
[2]   The solution of the Kato square root problem for second order elliptic operators on Rn [J].
Auscher, P ;
Hofmann, S ;
Lacey, M ;
McIntosh, A ;
Tchamitchian, P .
ANNALS OF MATHEMATICS, 2002, 156 (02) :633-654
[3]  
AUSCHER P, 2004, RIESZ TRANSFORMS MAN
[4]  
AUSCHER P., 1998, ASTERISQUE, V249
[5]  
AUSCHER P, 200404 U PAR SUD
[6]  
BAKRY D, 1987, LECT NOTES MATH, V1247, P137
[7]  
Bakry D., 1985, LECT NOTES MATH, V19, P145
[8]  
BAKRY D, 1989, SEM STOCH PROC BAS, V88
[9]  
Blunck S, 2003, REV MAT IBEROAM, V19, P919
[10]  
Caffarelli LA, 1998, COMMUN PUR APPL MATH, V51, P1