Improving the pore-ion size compatibility between poly(ionic liquid)-derived carbons and high-voltage electrolytes for high energy-power supercapacitors

被引:80
作者
Miao, Ling [1 ]
Duan, Hui [1 ]
Wang, Zhiwei [2 ]
Lv, Yaokang [3 ]
Xiong, Wei [4 ]
Zhu, Dazhang [1 ]
Gan, Lihua [1 ]
Li, Liangchun [1 ]
Liu, Mingxian [1 ,2 ]
机构
[1] Tongji Univ, Shanghai Key Lab Chem Assessment & Sustainabil, Sch Chem Sci & Engn, Shanghai 200092, PR, Peoples R China
[2] Tongji Univ, Shanghai Inst Pollut Control & Ecol Secur, Sch Environm Sci & Engn, State Key Lab Pollut Control & Resources Reuse, Shanghai 200092, PR, Peoples R China
[3] Zhejiang Univ Technol, Coll Chem Engn, Hangzhou 310014, Zhejiang, Peoples R China
[4] Wuhan Inst Technol, Sch Chem & Environm Engn, Key Lab Green Chem Proc, Minist Educ, Wuhan 430073, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Hierarchical porous carbon; Poly(ionic liquid); High-voltage electrolyte; Pore-ion size compatibility; Supercapacitor; High energy-power density; SURFACE-AREA; ACTIVATED CARBON; POROUS CARBONS; PROTIC SALT; LIQUID; CAPACITANCE; ELECTRODES; LITHIUM; STATE; GRAPHENE;
D O I
10.1016/j.cej.2019.122945
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Maximizing carbon capacitance in high-voltage electrolytes has gained increasing interests to resolve the low energy storage concern in supercapacitors. Yet the large ion sizes and high viscosity of such electrolytes greatly thwart their compatibility with the pore diameters of carbon electrodes, leading to sluggish charge transport and unsatisfied energy-power outputs. Herein, heteroatom-doped, hierarchical porous carbons are derived from a high-carbon-yield main-chain poly(ionic liquid) bearing NH2+: HSO4- ion pairs and rigid aromatic backbones, followed by tailoring the 3D porous architecture through alkali ion exchange and in-situ activation. The typical sample (PIL-RbC) has sheet-like geometry, electron-rich N/O heterogeneous dopants, and a vast adsorbing surface (3021 m(2) g(-1)). More importantly, PIL-RbC with ion-matching pores (dominated at 0.80 nm) and ion-transport paths (> 1 nm pores) shows a superb compatibility with 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid electrolyte, giving a maximized electrode capacitance of 228 F g(-1) in a symmetric supercapacitor. The PIL-RbC-based device delivers a high energy density up to 119.4 Wh kg(-1) at 397 W kg(-1), and maintains 41.7 Wh kg(-1) at a high power-output of 19.7 kW kg(-1), along with a satisfactory tolerability (91% retention after 10,000 consecutive cycles at 4 V). This strategy sheds light on both synthesizing poly(ionic liquid)-derived heteroatom-doped porous carbons and matching well-designed carbon electrodes with high-potential electrolytes for integrated enhancements in supercapacitor performances.
引用
收藏
页数:10
相关论文
共 78 条
[1]   Poly(ionic liquid)-Derived N-Doped Carbons with Hierarchical Porosity for Lithium- and Sodium-Ion Batteries [J].
Alkarmo, Walid ;
Ouhib, Farid ;
Aqil, Abdelhafid ;
Thomassin, Jean-Michel ;
Yuan, Jiayin ;
Gong, Jiang ;
Vertruyen, Benedicte ;
Detrembleur, Christophe ;
Jerome, Christine .
MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (01)
[2]   Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications [J].
Benzigar, Mercy R. ;
Talapaneni, Siddulu Naidu ;
Joseph, Stalin ;
Ramadass, Kavitha ;
Singh, Gurwinder ;
Scaranto, Jessica ;
Ravon, Ugo ;
Al-Bahily, Khalid ;
Vinu, Ajayan .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (08) :2680-2721
[3]   Revising the Concept of Pore Hierarchy for Ionic Transport in Carbon Materials for Supercapacitors [J].
Borchardt, Lars ;
Leistenschneider, Desiree ;
Haase, Juergen ;
Dvoyashkin, Muslim .
ADVANCED ENERGY MATERIALS, 2018, 8 (24)
[4]   Free-standing N-self-doped carbon nanofiber aerogels for high-performance all-solid-state supercapacitors [J].
Chen, Heng ;
Liu, Ting ;
Mau, Jirong ;
Zhang, Wenjia ;
Jiang, Zhongjie ;
Liu, Jiang ;
Huang, Jianlin ;
Liu, Meilin .
NANO ENERGY, 2019, 63
[5]   Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors [J].
Chen, Li-Feng ;
Lu, Yan ;
Yu, Le ;
Lou, Xiong Wen .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (08) :1777-1783
[6]   Carbon-based supercapacitors for efficient energy storage [J].
Chen, Xuli ;
Paul, Rajib ;
Dai, Liming .
NATIONAL SCIENCE REVIEW, 2017, 4 (03) :453-489
[7]  
Chmiola J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195
[8]   3D Ordered Macroporous MoS2@C Nanostructure for Flexible Li-Ion Batteries [J].
Deng, Zongnan ;
Jiang, Hao ;
Hu, Yanjie ;
Liu, Yu ;
Zhang, Ling ;
Liu, Honglai ;
Li, Chunzhong .
ADVANCED MATERIALS, 2017, 29 (10)
[9]   Using inorganic dynamic porogens for preparing high- surface- area capacitive carbons with tailored micropores [J].
Dong, Xiao-Ling ;
Li, Wen-Cui ;
Jiang, Biao ;
Zhou, Yu-Qi ;
Lu, An-Hui .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (02) :687-692
[10]   Safe and high-rate supercapacitors based on an "acetonitrile/water in salt" hybrid electrolyte [J].
Dou, Qingyun ;
Lei, Shulai ;
Wang, Da-Wei ;
Zhang, Qingnuan ;
Xiao, Dewei ;
Guo, Hongwei ;
Wang, Aiping ;
Yang, Hui ;
Li, Yongle ;
Shi, Siqi ;
Yan, Xingbin .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (11) :3212-3219