Jacobian elliptic Chebyshev rational maps

被引:26
作者
Kohda, T [1 ]
Fujisaki, H [1 ]
机构
[1] Kyushu Univ, Dept Comp Sci & Commun Engn, Higashi Ku, Fukuoka 8128581, Japan
关键词
chaos; ergodic map; independence; sequence of i.i.d. p-ary random variables; Chebyshev polynomial maps; Jacobian elliptic Chebyshev rational maps; ensemble average; correlation function; Perron-Frobenius operator;
D O I
10.1016/S0167-2789(00)00184-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the Jacobian elliptic Chebyshev rational maps with the the equidistributivity properly (or briefly EDP) and the semi-group property like the Chebyshev polynomial maps. Simple methods are also discussed for generating sequences of i.i.d. p-ary random variables based on the Jacobian elliptic Chebyshev rational maps. Furthermore, we give conjectures on correlational properties of a real-valued trajectory generated by the Jacobian elliptic Chebyshev rational maps. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:242 / 254
页数:13
相关论文
共 24 条
  • [1] Abramowitz M., 1972, HDB MATH FUNCTIONS F
  • [2] Beardon A.F., 1991, Graduate Texts in Mathematics, V132
  • [3] Billingsley P., 1995, Probability and measure, VThird
  • [4] FRICKE R, 1922, ELLIPTISCHEN FUNCTIO, V2
  • [5] FRICKE R, 1916, ELLIPTISCHEN FUNCTIO, V1
  • [6] STATISTICAL PROPERTIES OF CHAOS IN TSCHEBYSCHEV MAPS
    GEISEL, T
    FAIREN, V
    [J]. PHYSICS LETTERS A, 1984, 105 (06) : 263 - 266
  • [7] GROSSMANN S, 1977, Z NATURFORSCH A, V32, P1353
  • [8] Kac M., 1959, Statistical independence in probability, analysis and number theory
  • [9] EXACTLY SOLVABLE MODELS SHOWING CHAOTIC BEHAVIOR
    KATSURA, S
    FUKUDA, W
    [J]. PHYSICA A, 1985, 130 (03): : 597 - 605
  • [10] Statistics of chaotic binary sequences
    Kohda, T
    Tsuneda, A
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (01) : 104 - 112