One-pot hydrothermal synthesis of porous nickel cobalt phosphides with high conductivity for advanced energy conversion and storage

被引:168
作者
Hu, Yu-Mei [1 ]
Liu, Mao-Cheng [1 ,2 ]
Hu, Yu-Xia [3 ]
Yang, Qing-Qing [1 ]
Kong, Ling-Bin [2 ]
Kang, Long [2 ]
机构
[1] Lanzhou Univ Technol, State Key Lab Adv Proc & Recycling Nonferrous Met, Lanzhou 730050, Peoples R China
[2] Lanzhou Univ Technol, Sch Mat Sci & Engn, Lanzhou 730050, Peoples R China
[3] Lanzhou City Univ, Sch Bailie Engn & Technol, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
nickel cobalt phosphides; particles; high electrical conductivity; asymmetric supercapacitor; MICROWAVE-ASSISTED SYNTHESIS; DOUBLE HYDROXIDE NANOSHEETS; BINDER-FREE ELECTRODE; NI FOAM; FACILE SYNTHESIS; ELECTROCHEMICAL PERFORMANCE; ARRAYS; NANOSTRUCTURES; CARBON; MICROSPHERES;
D O I
10.1016/j.electacta.2016.08.074
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
High electrical conductivity is a vital factor to improve electrochemical performance of energy storage materials. In this work, bimetallic nickel cobalt phosphides with high electrical conductivity and different Ni/Co molar ratios are directly fabricated via a simple hydrothermal method. The samples show uniform teeny nanoparticles morphology and excellent electrochemical performance. The NiCoP sample exhibits the most prominent specific capacity (571 C g(-1) at 1 A g(-1)) and out-bound rate characteristic (72.8% capacity retention with a 20-fold increase in current densities), which can be attributed to the good crystallinity, larger specific surface area, and noteworthy intrinsic conductivity that convenient for fast electron transfer in active material and fleet reversible faradic reaction characteristics. Simultaneously, an optimal asymmetric supercapacitor based on NiCoP as positive and activated carbon as negative is assembled. It can achieve a high energy density of 32 Wh kg(-1) (at a power density of 0.351 kW kg(-1)) and prominent cycling stability with 91.8% initial capacity retention after 3000 cycles. It demonstrates that nickel cobalt phosphides are promising as energy storage materials. The study could also pave the way to explore a new class of bimetallic phosphides materials high electrical conductivity for electrochemical energy storage. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:114 / 125
页数:12
相关论文
共 78 条
[1]   Unusual Formation of ZnCo2O4 3D Hierarchical Twin Microspheres as a High-Rate and Ultralong-Life Lithium-Ion Battery Anode Material [J].
Bai, Jing ;
Li, Xiaogang ;
Liu, Guangzeng ;
Qian, Yitai ;
Xiong, Shenglin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (20) :3012-3020
[2]   Controllable synthesis of 3D binary nickel-cobalt hydroxide/graphene/nickel foam as a binder-free electrode for high-performance supercapacitors [J].
Bai, Yang ;
Wang, Weiqi ;
Wang, Ranran ;
Sun, Jing ;
Gao, Lian .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (23) :12530-12538
[3]   Metal Organic Framework-Derived Metal Phosphates as Electrode Materials for Supercapacitors [J].
Bendi, Ramaraju ;
Kumar, Vipin ;
Bhavanasi, Venkateswarlu ;
Parida, Kaushik ;
Lee, Pooi See .
ADVANCED ENERGY MATERIALS, 2016, 6 (03)
[4]   Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor [J].
Cai, Xiaoqing ;
Shen, Xiaoping ;
Ma, Lianbo ;
Ji, Zhenyuan ;
Xu, Chen ;
Yuan, Aihua .
CHEMICAL ENGINEERING JOURNAL, 2015, 268 :251-259
[5]   Microwave-assisted synthesis of hybrid CoxNi1-x(OH)2 nanosheets: Tuning the composition for high performance supercapacitor [J].
Chen, Gen ;
Liaw, Steven S. ;
Li, Binsong ;
Xu, Yun ;
Dunwell, Marco ;
Deng, Shuguang ;
Fan, Hongyou ;
Luo, Hongmei .
JOURNAL OF POWER SOURCES, 2014, 251 :338-343
[6]   Bimetallic nickel cobalt selenides: a new kind of electroactive material for high-power energy storage [J].
Chen, Haichao ;
Chen, Si ;
Fan, Meidiang ;
Li, Chao ;
Chen, Da ;
Tian, Guanglei ;
Shu, Kangying .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (47) :23653-23659
[7]   One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance [J].
Chen, Haichao ;
Jiang, Jianjun ;
Zhao, Yuandong ;
Zhang, Li ;
Guo, Danqing ;
Xia, Dandan .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (01) :428-437
[8]   Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors [J].
Chen, Haichao ;
Jiang, Jianjun ;
Zhang, Li ;
Qi, Tong ;
Xia, Dandan ;
Wan, Houzhao .
JOURNAL OF POWER SOURCES, 2014, 248 :28-36
[9]   Nickel- Cobalt Layered Double Hydroxide Nanosheets for High- performance Supercapacitor Electrode Materials [J].
Chen, Hao ;
Hu, Linfeng ;
Chen, Min ;
Yan, Yan ;
Wu, Limin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (07) :934-942
[10]   Rational design and synthesis of NixCo3-xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors [J].
Chen, Siru ;
Xue, Ming ;
Li, Yanqiang ;
Pan, Ying ;
Zhu, Liangkui ;
Qiu, Shilun .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (40) :20145-20152