Variational multiscale framework for cavitating flows

被引:27
作者
Bayram, A. [1 ]
Korobenko, A. [1 ]
机构
[1] Univ Calgary, Dept Mech & Mfg Engn, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Cavitation; Navier-Stokes; Finite elements; ALE-VMS; Sliding interface; Hydrokinetic turbines; FLUID-STRUCTURE INTERACTION; DEPENDENT BOUNDARY-CONDITIONS; FINITE-ELEMENT FORMULATIONS; TIME COMPUTATIONAL ANALYSIS; FLAPPING-WING AERODYNAMICS; DRIVEN STRING DYNAMICS; ISOGEOMETRIC ANALYSIS; FSI ANALYSIS; BLOOD-FLOW; GEOMETRICAL-CHARACTERISTICS;
D O I
10.1007/s00466-020-01840-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A numerical formulation for the modeling of turbulent cavitating flows is presented. The flow field is governed by the 3D, time-dependent Navier-Stokes equations for a compressible isothermal mixture. The Arbitrary Lagrangian-Eulerian Variational Multiscale (ALE-VMS) formulation is adopted to model the turbulent flow on moving domains with no-slip boundary conditions imposed weakly. The formulation is first tested on the cavitating flow over a 2D NACA0012 airfoil and compared to published numerical results. Next, the framework is applied to the benchmark problem for the flow over a hemispherical fore-body. The numerical results are compared to the reported experimental data, showing a good agreement over the range of cavitation numbers. Finally, the simulation of a hydrokinetic turbine in cavitating flow at a low cavitation number is presented in order to test the stability of the formulation and the capability to handle real engineering problems involving turbulent cavitating flows on moving domains.
引用
收藏
页码:49 / 67
页数:19
相关论文
共 179 条
  • [1] Stabilization parameters and smagorinsky turbulence model
    Akin, JE
    Tezduyar, T
    Ungor, M
    Mittal, S
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2003, 70 (01): : 2 - 9
  • [2] Akins R. E., 1989, SAND897051 SAND NAT
  • [3] Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS
    Akkerman, I.
    Dunaway, J.
    Kvandal, J.
    Spinks, J.
    Bazilevs, Y.
    [J]. COMPUTATIONAL MECHANICS, 2012, 50 (06) : 719 - 727
  • [4] Free-Surface Flow and Fluid-Object Interaction Modeling With Emphasis on Ship Hydrodynamics
    Akkerman, I.
    Bazilevs, Y.
    Benson, D. J.
    Farthing, M. W.
    Kees, C. E.
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2012, 79 (01):
  • [5] Reynolds-Averaged Navier-Stokes Equations for Turbulence Modeling
    Alfonsi, Giancarlo
    [J]. APPLIED MECHANICS REVIEWS, 2009, 62 (04) : 1 - 20
  • [6] Aliabadi S, 2005, 43 AIAA AER SCI M EX, P1288
  • [7] [Anonymous], 1990, FLOW FORUM
  • [8] [Anonymous], 2015, P 4 INT S MAR PROP S
  • [9] Experimental and numerical FSI study of compliant hydrofoils
    Augier, B.
    Yan, J.
    Korobenko, A.
    Czarnowski, J.
    Ketterman, G.
    Bazilevs, Y.
    [J]. COMPUTATIONAL MECHANICS, 2015, 55 (06) : 1079 - 1090
  • [10] Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank
    Bahaj, A. S.
    Molland, A. F.
    Chaplin, J. R.
    Batten, W. M. J.
    [J]. RENEWABLE ENERGY, 2007, 32 (03) : 407 - 426