Subnetwork State Functions Define Dysregulated Subnetworks in Cancer

被引:43
作者
Chowdhury, Salim A. [1 ]
Nibbe, Rod K. [2 ,4 ]
Chance, Mark R. [3 ,4 ]
Koyutuerk, Mehmet [1 ,4 ]
机构
[1] Case Western Reserve Univ, Dept Elect Engn & Comp Sci, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Dept Pharmacol, Cleveland, OH 44106 USA
[3] Case Western Reserve Univ, Dept Physiol & Biophys, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Ctr Prote & Bioinformat, Cleveland, OH 44106 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
combinatorial optimization; computational molecular biology; machine learning; GENE-EXPRESSION; COLORECTAL-CANCER; NETWORK; RECONSTRUCTION; NORMALIZATION; SET;
D O I
10.1089/cmb.2010.0269
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Emerging research demonstrates the potential of protein-protein interaction (PPI) networks in uncovering the mechanistic bases of cancers, through identification of interacting proteins that are coordinately dysregulated in tumorigenic and metastatic samples. When used as features for classification, such coordinately dysregulated subnetworks improve diagnosis and prognosis of cancer considerably over single-gene markers. However, existing methods formulate coordination between multiple genes through additive representation of their expression profiles and utilize fast heuristics to identify dysregulated subnetworks, which may not be well suited to the potentially combinatorial nature of coordinate dysregulation. Here, we propose a combinatorial formulation of coordinate dysregulation and decompose the resulting objective function to cast the problem as one of identifying subnetwork state functions that are indicative of phenotype. Based on this formulation, we show that coordinate dysregulation of larger subnetworks can be bounded using simple statistics on smaller subnetworks. We then use these bounds to devise an efficient algorithm, Crane, that can search the subnetwork space more effectively than existing algorithms. Comprehensive cross-classification experiments show that subnetworks identified by Crane outperform those identified by additive algorithms in predicting metastasis of colorectal cancer (CRC).
引用
收藏
页码:263 / 281
页数:19
相关论文
共 38 条
[11]   Deciphering cellular states of innate tumor drug responses [J].
Graudens, E ;
Boulanger, V ;
Mollard, C ;
Mariage-Samson, R ;
Barlet, X ;
Grémy, G ;
Couillault, C ;
Lajémi, M ;
Piatier-Tonneau, D ;
Zaborski, P ;
Eveno, E ;
Auffray, C ;
Imbeaud, S .
GENOME BIOLOGY, 2006, 7 (03)
[12]   Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction sub-network [J].
Guo, Zheng ;
Li, Yongjin ;
Gong, Xue ;
Yao, Chen ;
Ma, Wencai ;
Wang, Dong ;
Li, Yanhui ;
Zhu, Jing ;
Zhang, Min ;
Yang, Da ;
Wang, Jing .
BIOINFORMATICS, 2007, 23 (16) :2121-2128
[13]   A susceptibility gene set for early onset colorectal cancer that integrates diverse signaling pathways: Implication for tumorigenesis [J].
Hong, Yi ;
Ho, Kok Sun ;
Eu, Kong Weng ;
Cheah, Peh Yean .
CLINICAL CANCER RESEARCH, 2007, 13 (04) :1107-1114
[14]  
IDEKER T, 2002, P ISMB, P233
[15]   Protein networks in disease [J].
Ideker, Trey ;
Sharan, Roded .
GENOME RESEARCH, 2008, 18 (04) :644-652
[16]   A Network-Based Method for Predicting Disease-Causing Genes [J].
Karni, Shaul ;
Soreq, Hermona ;
Sharan, Roded .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2009, 16 (02) :181-189
[17]   Whole genome analysis for liver metastasis gene signatures in colorectal cancer [J].
Ki, Dong Hyuk ;
Jeung, Hei-Cheul ;
Park, Chan Hee ;
Kang, Seung Hee ;
Lee, Gui Youn ;
Lee, Won Suk ;
Kim, Nam Kyu ;
Chung, Hyun Chul ;
Rha, Sun Young .
INTERNATIONAL JOURNAL OF CANCER, 2007, 121 (09) :2005-2012
[18]  
Koyutürk M, 2004, 2004 IEEE COMPUTATIONAL SYSTEMS BIOINFORMATICS CONFERENCE, PROCEEDINGS, P480
[19]   A human phenome-interactome network of protein complexes implicated in genetic disorders [J].
Lage, Kasper ;
Karlberg, E. Olof ;
Storling, Zenia M. ;
Olason, Pall I. ;
Pedersen, Anders G. ;
Rigina, Olga ;
Hinsby, Anders M. ;
Tumer, Zeynep ;
Pociot, Flemming ;
Tommerup, Niels ;
Moreau, Yves ;
Brunak, Soren .
NATURE BIOTECHNOLOGY, 2007, 25 (03) :309-316
[20]   Network-based analysis of affected biological processes in type 2 diabetes models [J].
Liu, Manway ;
Liberzon, Arthur ;
Kong, Sek Won ;
Lai, Weil R. ;
Park, Peter J. ;
Kohane, Isaac S. ;
Kasif, Simon .
PLOS GENETICS, 2007, 3 (06) :958-972