Human mediator enhances activator-facilitated recruitment of RNA polymerase II and promoter recognition by TATA-binding protein (TBP) independently of TBP-associated factors

被引:48
作者
Wu, SY [1 ]
Zhou, TY [1 ]
Chiang, CM [1 ]
机构
[1] Case Western Reserve Univ, Sch Med, Dept Biochem, Cleveland, OH 44106 USA
关键词
D O I
10.1128/MCB.23.17.6229-6242.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mediator is a general cofactor implicated in the functions of many transcriptional activators. Although Mediator with different protein compositions has been isolated, it remains unclear how Mediator facilitates activator-dependent transcription, independent of its general stimulation of basal transcription. To define the mechanisms of Mediator function, we isolated two forms of human Mediator complexes (Mediator-P.5 and Mediator-P.85) and demonstrated that Mediator-P.5 clearly functions by enhancing activator-mediated recruitment of RNA polymerase II (pol II), whereas Mediator-P.85 works mainly by stimulating overall basal transcription. The coactivator function of Mediator-P.5 was not impaired when TATA-binding protein (TBP) was used in place of TFIID, but it was abolished when another general cofactor, PC4, was omitted from the reaction or when Mediator-P.5 was added after pol II entry into the preinitiation complex. Moreover, Mediator-P.5 is able to enhance TBP binding to the TATA box in an activator-dependent manner. Our data provides biochemical evidence that Mediator functions by facilitating activator-mediated recruitment of pol II and also promoter recognition by TBP, both of which can occur in the absence of TBP-associated factors in TFIID.
引用
收藏
页码:6229 / 6242
页数:14
相关论文
共 100 条
[1]   Mediator and p300/CBP-steroid receptor coactivator complexes have distinct roles, but function synergistically, during estrogen receptor α-dependent transcription with chromatin templates [J].
Acevedo, ML ;
Kraus, WL .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (01) :335-348
[2]   Deciphering the transcriptional histone acetylation code for a human gene [J].
Agalioti, T ;
Chen, GY ;
Thanos, D .
CELL, 2002, 111 (03) :381-392
[3]   TFIIH is negatively regulated by cdk8-containing mediator complexes [J].
Akoulitchev, S ;
Chuikov, S ;
Reinberg, D .
NATURE, 2000, 407 (6800) :102-106
[4]   Conserved structures of mediator and RNA polymerase II holoenzyme [J].
Asturias, FJ ;
Jiang, YW ;
Myers, LC ;
Gustafsson, CM ;
Kornberg, RD .
SCIENCE, 1999, 283 (5404) :985-987
[5]   Requirement of TRAP/mediator for both activator-independent and activator-dependent transcription in conjunction with TFIID-associated TAFIIs [J].
Baek, HJ ;
Malik, S ;
Qin, J ;
Roeder, RG .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (08) :2842-2852
[6]   A complex of the Srb8,-9,-10, and-11 transcriptional regulatory proteins from yeast [J].
Borggrefe, T ;
Davis, R ;
Erdjument-Bromage, H ;
Tempst, P ;
Kornberg, RD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (46) :44202-44207
[7]   Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man [J].
Boube, M ;
Joulia, L ;
Cribbs, DL ;
Bourbon, HM .
CELL, 2002, 110 (02) :143-151
[8]   Mammalian Srb Mediator complex is targeted by adenovirus E1A protein [J].
Boyer, TG ;
Martin, MED ;
Lees, E ;
Ricciardi, RP ;
Berk, AJ .
NATURE, 1999, 399 (6733) :276-279
[9]   The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAF(II)60 of Drosophila [J].
Burke, TW ;
Kadonaga, JT .
GENES & DEVELOPMENT, 1997, 11 (22) :3020-3031
[10]   A multiplicity of mediators: alternative forms of transcription complexes communicate with transcriptional regulators [J].
Chang, MP ;
Jaehning, JA .
NUCLEIC ACIDS RESEARCH, 1997, 25 (24) :4861-4865