Global Well-Posedness for the Fractional Nonlinear Schrodinger Equation

被引:123
作者
Guo, Boling [2 ]
Huo, Zhaohui [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing, Peoples R China
[3] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
关键词
Fractional Schrodinger equation; Global well-posedness; Xs; b spaces;
D O I
10.1080/03605302.2010.503769
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The global well-posedness for the Cauchy problem of the 1-D fractional nonlinear Schrodinger equation [image omitted] is considered. If [image omitted], then global well-posedness in L2 is obtained.
引用
收藏
页码:247 / 255
页数:9
相关论文
共 7 条
[1]  
B, 1993, Geom Funct Anal, V3, P209
[2]   Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrodinger equation [J].
Guo Boling ;
Han Yongqian ;
Xin Jie .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (01) :468-477
[3]   THE CAUCHY-PROBLEM FOR THE KORTEWEG-DEVRIES EQUATION IN SOBOLEV SPACES OF NEGATIVE INDEXES [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
DUKE MATHEMATICAL JOURNAL, 1993, 71 (01) :1-21
[4]   A bilinear estimate with applications to the KdV equation [J].
Kenig, CE ;
Ponce, G ;
Vega, L .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :573-603
[5]   Fractional Schrodinger equation [J].
Laskin, N .
PHYSICAL REVIEW E, 2002, 66 (05) :7-056108
[6]   Fractional quantum mechanics and Levy path integrals [J].
Laskin, N .
PHYSICS LETTERS A, 2000, 268 (4-6) :298-305
[7]   Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equations [J].
Tao, T .
AMERICAN JOURNAL OF MATHEMATICS, 2001, 123 (05) :839-908