On the structure of generalized symmetric spaces of SLn(Fq)

被引:2
作者
Buell, C. [1 ]
Helminck, A. [2 ]
Klima, V. [3 ]
Schaefer, J. [4 ]
Wright, C. [5 ]
Ziliak, E. [6 ]
机构
[1] Fitchburg State Univ, Dept Math, Fitchburg, MA USA
[2] Univ Hawaii Manoa, Coll Nat Sci, Honolulu, HI 96822 USA
[3] Appalachian State Univ, Dept Math Sci, Boone, NC 28608 USA
[4] Dickinson Coll, Dept Math & Comp Sci, POB 1773, Carlisle, PA 17013 USA
[5] Jackson State Univ, Dept Math & Stat Sci, Jackson, MS USA
[6] Benedictine Univ, Dept Math & Computat Sci, Lisle, IL USA
关键词
Finite fields; generalized symmetric space; special linear group; INVARIANT DISTRIBUTION VECTORS; SEMISIMPLE LIE-GROUPS; IRREDUCIBLE CHARACTERS; PRINCIPAL SERIES; INVOLUTIONS;
D O I
10.1080/00927872.2017.1296458
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we extend previous results regarding SL2(k) over any finite field k by investigating the structure of the symmetric spaces for the family of special linear groups SLn(k) for any integer n>2. Specifically, we discuss the generalized and extended symmetric spaces of SLn(k) for all conjugacy classes of involutions over a finite field of odd or even characteristic. We characterize the structure of these spaces and provide an explicit difference set in cases where the two spaces are not equal.
引用
收藏
页码:5123 / 5136
页数:14
相关论文
共 36 条
[1]   Symmetric and alternate matrices in an arbitrary field, I [J].
Albert, A. Adrian .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 43 (1-3) :386-436
[2]  
Artin E., 1957, Geometric algebra, DOI 10.1002/9781118164518
[3]  
BEILINSON A, 1981, CR ACAD SCI I-MATH, V292, P15
[4]   H-INVARIANT DISTRIBUTION VECTORS FOR GENERALIZED PRINCIPAL SERIES OF REDUCTIVE SYMMETRICAL SPACES AND MEROMORPHIC EXTENTION OF EISENSTEIN INTEGRALS [J].
BRYLINSKI, JL ;
DELORME, P .
INVENTIONES MATHEMATICAE, 1992, 109 (03) :619-664
[5]  
Buell C., On the structure of generalized symmetric spaces of SL2(Fq) and GL2(Fq)
[6]   MEROMORPHIC BASIS OF H-INVARIANT DISTRIBUTION VECTORS FOR THE GENERALIZED PRINCIPAL SERIES OF REDUCTIVE SYMMETRICAL SPACES - FUNCTIONAL-EQUATION [J].
CARMONA, J ;
DELORME, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (01) :152-221
[7]  
Cartan E., 1926, B SOC MATH FRANCE, V54, P214
[8]  
Cartan E., 1929, J. Math. Pures Appl., V8, P1
[9]  
CARTAN E., 1927, Bull. Soc. Math. Fr, V55, P114, DOI DOI 10.24033/BSMF.1113
[10]  
De Concini C., 1985, COMPLETE SYMMETRIC V, P481