StackDA: A Stacked Dual Attention Neural Network for Multivariate Time-Series Forecasting

被引:0
|
作者
Hong, Jungsoo [1 ]
Park, Jinuk [1 ]
Park, Sanghyun [1 ]
机构
[1] Yonsei Univ, Dept Comp Sci, Seoul 03722, South Korea
关键词
Forecasting; Predictive models; Decoding; Training; Data models; Noise reduction; Deep learning; Attention mechanism; autoregressive model; denoising training; multi-step forecasting; multivariate time-series forecasting;
D O I
10.1109/ACCESS.2021.3122910
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multivariate time-series forecasting derives key seasonality from past patterns to predict future time-series. Multi-step forecasting is crucial in the industrial sector because a continuous perspective leads to more effective decisions. However, because it depends on previous prediction values, multi-step forecasting is highly unstable. To mitigate this problem, we introduce a novel model, named stacked dual attention neural network (StackDA), based on an encoder-decoder. In dual attention, the initial attention is for the time dependency between the encoder and decoder, and the second attention is for the time dependency in the decoder time steps. We stack dual attention to stabilize the long-term dependency and multi-step forecasting problem. We add an autoregression component to resolve the lack of linear properties because our method is based on a nonlinear neural network model. Unlike the conventional autoregressive model, we propose skip autoregressive to deal with multiple seasonalities. Furthermore, we propose a denoising training method to take advantage of both the teacher forcing and without teacher forcing methods. We adopt multi-head fully connected layers for the variable-specific modeling owing to our multivariate time-series data. We add positional encoding to provide the model with time information to recognize seasonality more accurately. We compare our model performance with that of machine learning and deep learning models to verify our approach. Finally, we conduct various experiments, including an ablation study, a seasonality determination test, and a stack attention test, to demonstrate the performance of StackDA.
引用
收藏
页码:145955 / 145967
页数:13
相关论文
共 50 条
  • [41] Neural additive time-series models: Explainable deep learning for multivariate time-series prediction
    Jo, Wonkeun
    Kim, Dongil
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 228
  • [42] A Recurrent Neural Network based Generative Adversarial Network for Long Multivariate Time Series Forecasting
    Tang, Peiwang
    Zhang, Qinghua
    Zhang, Xianchao
    PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023, 2023, : 181 - 189
  • [43] Time-Lag Selection for Time-Series Forecasting Using Neural Network and Heuristic Algorithm
    Surakhi, Ola
    Zaidan, Martha A.
    Fung, Pak Lun
    Hossein Motlagh, Naser
    Serhan, Sami
    AlKhanafseh, Mohammad
    Ghoniem, Rania M.
    Hussein, Tareq
    ELECTRONICS, 2021, 10 (20)
  • [44] Trend time-series modeling and forecasting with neural networks
    Qi, Min
    Zhang, G. Peter
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (05): : 808 - 816
  • [45] Building Trend Fuzzy Granulation-Based LSTM Recurrent Neural Network for Long-Term Time-Series Forecasting
    Tang, Yuqing
    Yu, Fusheng
    Pedrycz, Witold
    Yang, Xiyang
    Wang, Jiayin
    Liu, Shihu
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (06) : 1599 - 1613
  • [46] LAVARNET: Neural network modeling of causal variable relationships for multivariate time series forecasting
    Koutlis, Christos
    Papadopoulos, Symeon
    Schinas, Manos
    Kompatsiaris, Ioannis
    APPLIED SOFT COMPUTING, 2020, 96 (96)
  • [47] Multi-channel fusion graph neural network for multivariate time series forecasting
    Chen, Yanzhe
    Xie, Zongxia
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 64
  • [48] Dynamic personalized graph neural network with linear complexity for multivariate time series forecasting
    Li, ZhuoLin
    Gao, ZiHeng
    Zhang, GaoWei
    Liu, JingJing
    Xu, LingYu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [49] Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting
    Chen L.
    Chen D.
    Shang Z.
    Wu B.
    Zheng C.
    Wen B.
    Zhang W.
    IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (10) : 10748 - 10761
  • [50] DA-Net: Dual-attention network for multivariate time series classification
    Chen, Rongjun
    Yan, Xuanhui
    Wang, Shiping
    Xiao, Guobao
    INFORMATION SCIENCES, 2022, 610 : 472 - 487