SURVIVAL OF INFINITELY MANY CRITICAL POINTS FOR THE RABINOWITZ ACTION FUNCTIONAL

被引:6
作者
Kang, Jungsoo [1 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
关键词
Rabinowitz Floer homology; leafwise intersections; FLOER HOMOLOGY; FIXED-POINTS;
D O I
10.3934/jmd.2010.4.733
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that if Rabinowitz Floer homology has infinite dimension, there exist infinitely many critical points of a Rabinowitz action functional even though it could be non-Morse. This result is proved by examining filtered Rabinowitz Floer homology.
引用
收藏
页码:733 / 739
页数:7
相关论文
共 19 条
[1]  
ALBERS P, ARXIV08124426
[2]  
ALBERS P, J SYMPLECTI IN PRESS
[3]  
Albers P., 2010, ISRAEL J MA IN PRESS
[4]   Cup-length estimates for leaf-wise intersections [J].
Albers, Peter ;
Momin, Al .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 149 :539-551
[5]   LEAF-WISE INTERSECTIONS AND RABINOWITZ FLOER HOMOLOGY [J].
Albers, Peter ;
Frauenfelder, Urs .
JOURNAL OF TOPOLOGY AND ANALYSIS, 2010, 2 (01) :77-98
[6]   SPECTRAL INVARIANTS IN RABINOWITZ-FLOER HOMOLOGY AND GLOBAL HAMILTONIAN PERTURBATIONS [J].
Albers, Peter ;
Frauenfelder, Urs .
JOURNAL OF MODERN DYNAMICS, 2010, 4 (02) :329-357
[7]   FIXED-POINTS OF SYMPLECTIC MAPS [J].
BANYAGA, A .
INVENTIONES MATHEMATICAE, 1980, 56 (03) :215-229
[8]  
CIELIEBAK K, 2009, ANN SCI LEN IN PRESS
[9]   A FLOER HOMOLOGY FOR EXACT CONTACT EMBEDDINGS [J].
Cieliebak, Kai ;
Frauenfelder, Urs Adrian .
PACIFIC JOURNAL OF MATHEMATICS, 2009, 239 (02) :251-316
[10]   Symplectic rigidity, symplectic fixed points, and global perturbations of Hamiltonian systems [J].
Dragnev, Dragomir L. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (03) :346-370