FREDHOLM PROPERTIES OF THE L2 EXPONENTIAL MAP ON THE SYMPLECTOMORPHISM GROUP

被引:2
|
作者
Benn, James [1 ]
机构
[1] 3 Hardie St, Palmerston North 4410, Hokowhitu, New Zealand
关键词
Diffeomorphism group; Maxwell-Vlasov; geodesic; conjugate point; Fredholm map; symplectic Euler equations; CONJUGATE-POINTS; VLASOV EQUATIONS; IDEAL FLUIDS; GEODESICS; GEOMETRY; FLOWS;
D O I
10.3934/jgm.2016.8.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a closed symplectic manifold with compatible symplectic form and Riemannian metric g. Here it is shown that the exponential mapping of the weak L-2 metric on the group of symplectic diffeomorphisms of M is a non-linear Fredholm map of index zero. The result provides an interesting contrast between the L-2 metric and Hofer's metric as well as an intriguing difference between the L-2 geometry of the symplectic diffeomorphism group and the volume-preserving diffeomorphism group.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 23 条
  • [1] Singularities of the exponential map on the volume-preserving diffeomorphism group
    D. G. Ebin
    G. Misiołek
    S. C. Preston
    Geometric & Functional Analysis GAFA, 2006, 16 : 850 - 868
  • [2] Singularities of the exponential map on the volume-preserving diffeomorphism group
    Ebin, D. G.
    Misiolek, G.
    Preston, S. C.
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2006, 16 (04) : 850 - 868
  • [3] The exponential map on the free loop space is Fredholm
    Misiolek, G
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1997, 7 (05) : 954 - 969
  • [4] The Exponential Map on the Free Loop Space is Fredholm
    G. Misiołek
    Geometric & Functional Analysis GAFA, 1997, 7 : 954 - 969
  • [5] The Exponential Map of the Group of Area-Preserving Diffeomorphisms of a Surface with Boundary
    Benn, James
    Misiolek, Gerard
    Preston, Stephen C.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 229 (03) : 1015 - 1035
  • [6] The Exponential Map Near Conjugate Points In 2D Hydrodynamics
    Misiołek G.
    Arnold Mathematical Journal, 2015, 1 (3) : 243 - 251
  • [7] Regularity and Continuity Properties of the Sub-Riemannian Exponential Map
    Samuël Borza
    Wilhelm Klingenberg
    Journal of Dynamical and Control Systems, 2023, 29 : 1385 - 1407
  • [8] Regularity and Continuity Properties of the Sub-Riemannian Exponential Map
    Borza, Samuel
    Klingenberg, Wilhelm
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (04) : 1385 - 1407
  • [9] SIEGEL-VEECH TRANSFORMS ARE IN L2
    Athreya, Jayadev S.
    Cheung, Yitwah
    Masur, Howard
    Ruhr, Rene
    JOURNAL OF MODERN DYNAMICS, 2019, 14 : 1 - 19
  • [10] On Walk Domination: Weakly Toll Domination, l2 and l3 Domination
    Gutierrez, Marisa
    Tondato, Silvia B.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (03) : 837 - 861