Hemagglutinin glycosylation modulates the pathogenicity and antigenicity of the H5N1 avian influenza virus

被引:47
|
作者
Zhang, Xiaojian [1 ,2 ,3 ]
Chen, Sujuan [1 ,2 ,3 ]
Jiang, Yi [1 ,2 ,3 ]
Huang, Kai [1 ,2 ,3 ]
Huang, Jun [1 ,2 ,3 ]
Yang, Da [1 ,2 ,3 ]
Zhu, Jingjing [1 ,2 ,3 ]
Zhu, Yinbiao [1 ,2 ,3 ]
Shi, Shaohua [1 ,2 ,3 ]
Peng, Daxin [1 ,2 ,3 ]
Liu, Xiufan [1 ,2 ,3 ]
机构
[1] Yangzhou Univ, Coll Vet Med, Yangzhou 225009, Jiangsu, Peoples R China
[2] Jiangsu Co Innovat Ctr Prevent & Control Importan, Yangzhou 225009, Jiangsu, Peoples R China
[3] Jiangsu Res Ctr Engn & Technol Prevent & Control, Yangzhou 225009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Avian influenza virus; Hemagglutinin; Glycosylation; Pathogenicity; Antigenicity; N-LINKED GLYCOSYLATION; RECEPTOR-BINDING; STALK-LENGTH; A VIRUS; VIRULENCE; GLYCAN; NEURAMINIDASE; PROTEIN; IMMUNOGENICITY; GLYCOPROTEINS;
D O I
10.1016/j.vetmic.2014.12.011
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The location and number of glycosylation in HA proteins exhibit large variations among H5 subtype avian influenza viruses (AIVs). To investigate the effect of glycosylation in the globular head of HA on the pathogenicity and antigenicity of H5N1 AIVs, seven rescued AIVs differing in their glycosylation patterns (144N, 158N and 169N) within the HA globular head of A/Mallard/Huadong/S/2005 were generated using site directed mutagenesis. Results showed that loss of glycosylation 158N was the prerequisite for H5 AIV binding to the alpha 2,6-linked receptor. Only in conjunction with the removal of the 158N glycosylation, the H5 AIVs harboring both 144N and 169N glycosylations obtained an optimal binding preference to the alpha 2,6-linked receptor. Compared with the wild-type virus, growth of viruses lacking glycosylation at either 158N or 169N was significantly reduced both in MDCK and A549 cells, while replication of viruses with additional glycosylation 144N was significantly promoted. Mutant viruses with loss of 158N or 169N glycosylation sites showed increased pathogenicity, systemic spread and pulmonary inflammation in mice compared to the wild-type H5N1 virus. In addition, chicken studies demonstrated that inactivated de-glycosylation 169N mutant induced cross-reaction HI and neutralization antibody against various clades of H5N1 AIVs. Moreover, this type of glycan pattern vaccine virus provided better cross-protection in chickens compared to wild-type vaccine virus. Thus, the glycosylation alteration of HA should be considered in the global surveillance and vaccine design of H5 subtype AIVs. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:244 / 256
页数:13
相关论文
共 50 条
  • [31] The antigenic architecture of the hemagglutinin of influenza H5N1 viruses
    Velkov, Tony
    Ong, Chi
    Baker, Mark A.
    Kim, Hyunsuh
    Li, Jian
    Nation, Roger L.
    Huang, Johnny X.
    Cooper, Matthew A.
    Rockman, Steve
    MOLECULAR IMMUNOLOGY, 2013, 56 (04) : 705 - 719
  • [32] Analysis of hemagglutinin-mediated entry tropism of H5N1 avian influenza
    Guo, Ying
    Rumschlag-Booms, Emily
    Wang, Jizhen
    Xiao, Haixia
    Yu, Jia
    Wang, Jianwei
    Guo, Li
    Gao, George F.
    Cao, Youjia
    Caffrey, Michael
    Rong, Lijun
    VIROLOGY JOURNAL, 2009, 6
  • [33] Recombinant Parainfluenza Virus 5 Expressing Hemagglutinin of Influenza A Virus H5N1 Protected Mice against Lethal Highly Pathogenic Avian Influenza Virus H5N1 Challenge
    Li, Zhuo
    Mooney, Alaina J.
    Gabbard, Jon D.
    Gao, Xiudan
    Xu, Pei
    Place, Ryan J.
    Hogan, Robert J.
    Tompkins, S. Mark
    He, Biao
    JOURNAL OF VIROLOGY, 2013, 87 (01) : 354 - 362
  • [34] Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens
    Bertran, Kateri
    Thomas, Colleen
    Guo, Xuan
    Bublot, Michel
    Pritchard, Nikki
    Regan, Jeffrey T.
    Cox, Kevin M.
    Gasdaska, John R.
    Dickey, Lynn F.
    Kapczynski, Darrell R.
    Swayne, David E.
    VACCINE, 2015, 33 (30) : 3456 - 3462
  • [35] Mapping Antibody Epitopes of the Avian H5N1 Influenza Virus
    Yen, Hui-Ling
    Peiris, J. S. Malik
    PLOS MEDICINE, 2009, 6 (04):
  • [36] Advances in Detection Techniques for the H5N1 Avian Influenza Virus
    Fu, Xianshu
    Wang, Qian
    Ma, Biao
    Zhang, Biao
    Sun, Kai
    Yu, Xiaoping
    Ye, Zihong
    Zhang, Mingzhou
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (24)
  • [37] Addition of N-glycosylation sites on the globular head of the H5 hemagglutinin induces the escape of highly pathogenic avian influenza A H5N1 viruses from vaccine-induced immunity
    Herve, Pierre-Louis
    Lorin, Valerie
    Jouvion, Gregory
    Da Costa, Bruno
    Escriou, Nicolas
    VIROLOGY, 2015, 486 : 134 - 145
  • [38] Detection and spread of high pathogenicity avian influenza virus H5N1 in the Antarctic Region
    Banyard, Ashley C.
    Bennison, Ashley
    Byrne, Alexander M. P.
    Reid, Scott M.
    Lynton-Jenkins, Joshua G.
    Mollett, Benjamin
    De Silva, Dilhani
    Peers-Dent, Jacob
    Finlayson, Kim
    Hall, Rosamund
    Blockley, Freya
    Blyth, Marcia
    Falchieri, Marco
    Fowler, Zoe
    Fitzcharles, Elaine M.
    Brown, Ian H.
    James, Joe
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [39] Susceptibility of Pigeons to Glade 1 and 2.2 High Pathogenicity Avian Influenza H5N1 Virus
    Smietanka, Krzysztof
    Minta, Zenon
    Wyrostek, Krzysztof
    Jozwiak, Michal
    Olszewska, Monika
    Domanska-Blicharz, Katarzyna
    Reichert, Michal
    Pikula, Anna
    Habyarimana, Adelite
    van den Berg, Thierry
    AVIAN DISEASES, 2011, 55 (01) : 106 - 112
  • [40] Viral and Host Factors Required for Avian H5N1 Influenza A Virus Replication in Mammalian Cells
    Zhang, Hong
    Hale, Benjamin G.
    Xu, Ke
    Sun, Bing
    VIRUSES-BASEL, 2013, 5 (06): : 1431 - 1446