Position-dependent memory kernel in generalized Langevin equations: Theory and numerical estimation

被引:31
作者
Vroylandt, Hadrien [1 ]
Monmarche, Pierre [2 ,3 ]
机构
[1] Sorbonne Univ, Inst Sci Calcul & Donnees, ISCD, F-75005 Paris, France
[2] Sorbonne Univ, Lab Jacques Louis Lions, LJLL, F-75005 Paris, France
[3] Sorbonne Univ, Lab Chim Theor, LCT, F-75005 Paris, France
关键词
VOLTERRA INTEGRAL-EQUATIONS; OPTIMAL PREDICTION; ZWANZIG; RECONSTRUCTION; REPRESENTATION; DYNAMICS; MOTION;
D O I
10.1063/5.0094566
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Generalized Langevin equations with non-linear forces and position-dependent linear friction memory kernels, such as commonly used to describe the effective dynamics of coarse-grained variables in molecular dynamics, are rigorously derived within the Mori-Zwanzig formalism. A fluctuation-dissipation theorem relating the properties of the noise to the memory kernel is shown. The derivation also yields Volterra-type equations for the kernel, which can be used for a numerical parametrization of the model from all-atom simulations. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:13
相关论文
共 56 条
  • [1] Armand A., 2014, INT J IND MATH, V6, P27
  • [2] Generalized Langevin equation with a nonlinear potential of mean force and nonlinear memory friction from a hybrid projection scheme
    Ayaz, Cihan
    Scalfi, Laura
    Dalton, Benjamin A.
    Netz, Roland R.
    [J]. PHYSICAL REVIEW E, 2022, 105 (05)
  • [3] Non-Markovian modeling of protein folding
    Ayaz, Cihan
    Tepper, Lucas
    Brunig, Florian N.
    Kappler, Julian
    Daldrop, Jan O.
    Netz, Roland R.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (31)
  • [4] A perspective on the numerical treatment of Volterra equations
    Baker, CTH
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) : 217 - 249
  • [5] MEMORY KERNELS FROM MOLECULAR-DYNAMICS
    BERKOWITZ, M
    MORGAN, JD
    KOURI, DJ
    MCCAMMON, JA
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (05) : 2462 - 2463
  • [6] Berne B. J., 1970, Advances in chemical physics vol. 18, P63, DOI 10.1002/9780470143636.ch3
  • [7] Solution of a system of Volterra integral equations of the first kind by Adomian method
    Biazar, J
    Babolian, E
    Islam, R
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2003, 139 (2-3) : 249 - 258
  • [8] Two algorithms to compute projected correlation functions in molecular dynamics simulations
    Carof, Antoine
    Vuilleumier, Rodolphe
    Rotenberg, Benjamin
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (12)
  • [9] Optimal prediction and the Mori-Zwanzig representation of irreversible processes
    Chorin, AJ
    Hald, OH
    Kupferman, R
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) : 2968 - 2973
  • [10] Optimal prediction with memory
    Chorin, AJ
    Hald, OH
    Kupferman, R
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2002, 166 (3-4) : 239 - 257