A class of self-affine sets and self-affine measures

被引:57
作者
Feng, DJ [1 ]
Wang, Y
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
Hausdorff dimension; self-similar set; finite type condition;
D O I
10.1007/s00041-004-4031-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:107 / 124
页数:18
相关论文
共 27 条
[1]  
Bedford T., 1984, THESIS U WARWICK
[2]   MULTIFRACTAL DECOMPOSITIONS OF MORAN FRACTALS [J].
CAWLEY, R ;
MAULDIN, RD .
ADVANCES IN MATHEMATICS, 1992, 92 (02) :196-236
[3]  
Dembo A., 2010, Large Deviations Techniques and Applications
[4]  
Falconer K., 1990, FRACTAL GEOMETRY MAT, V2
[5]   THE HAUSDORFF DIMENSION OF SELF-AFFINE FRACTALS [J].
FALCONER, KJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :339-350
[6]   Generalized dimensions of measures on self-affine sets [J].
Falconer, KJ .
NONLINEARITY, 1999, 12 (04) :877-891
[7]  
FAN AH, 2000, ASIAN J MATH, V4, P527
[8]   Smoothness of the Lq-spectrum of self-similar measures with overlaps [J].
Feng, DJ .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 68 :102-118
[9]  
FENG DJ, UNPUB LIMITED RADEMA
[10]   Box dimensions and topological pressure for some expanding maps [J].
Hu, HY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 191 (02) :397-407