MRI-based Prostate and Dominant Lesion Segmentation using Deep Neural Network

被引:0
作者
Wang, Tonghe [1 ,3 ]
Lei, Yang [1 ]
Ojo, Olayinka A. Abiodun [2 ]
Akin-Akintayo, Oladunni O. [2 ]
Akintayo, Akinyemi A. [2 ]
Curran, Walter J. [1 ,3 ]
Liu, Tian [1 ,3 ]
Schuster, David M. [2 ,3 ]
Yang, Xiaofeng [1 ,3 ]
机构
[1] Emory Univ, Dept Radiat Oncol, Atlanta, GA 30322 USA
[2] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA 30322 USA
[3] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
来源
MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS | 2021年 / 11597卷
基金
美国国家卫生研究院;
关键词
MRI; Segmentation; Prostate; Dominant lesion; Deep learning; INTRAPROSTATIC LESIONS; DOSE-ESCALATION; CANCER;
D O I
10.1117/12.2581061
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this study, a learning-based method using mask R-CNN is proposed to automatically segment prostate and its dominant intraprostatic lesions (DILs) from magnetic resonance (MR) images. The mask R-CNN is able to perform end-to-end segmentation by locating the target region-of-interest (ROI) and then segmenting target within that ROI. The ROI locating step can improve the efficiency of the segmentation step by decreasing the image size. Dual attention networks are used as backbone in mask R-CNN to extract comprehensive features from MR images. The binary mask of targets of an arrival patient's MR image is generated by the well-trained network. To evaluate the proposed method, we retrospectively investigate 25 MRI datasets. On each dataset, prostate and DILs were delineated by physicians and was served as ground truth and training target. The proposed method was trained and evaluated by a five-fold cross validation strategy. The average centroid distance, volume difference and DSC value for prostate/DIL among all 25 patients are 0.85 +/- 2.62mm/2.77 +/- 2.13, 0.58 +/- 0.52cc/1.72 +/- 1.74cc and 0.95 +/- 0.09/0.69 +/- 0.12, respectively. The proposed method has shown accurate segmentation performance, which is promising in improving the efficiency and mitigating the observer-dependence in prostate and DIL contouring for DIL focal boost radiation therapy.
引用
收藏
页数:6
相关论文
共 23 条
  • [1] Does Local Recurrence of Prostate Cancer After Radiation Therapy Occur at the Site of Primary Tumor? Results of a Longitudinal MRI and MRSI Study
    Arrayeh, Elnasif
    Westphalen, Antonio C.
    Kurhanewicz, John
    Roach, Mack, III
    Jung, Adam J.
    Carroll, Peter R.
    Coakley, Fergus V.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2012, 82 (05): : E787 - E793
  • [2] Bickelhaupt S., 2018, ARXIV PREPRINT ARXIV
  • [3] Phase I study of dose escalation to dominant intraprostatic lesions using high-dose-rate brachytherapy
    Chapman, Christopher H.
    Braunstein, Steve E.
    Pouliot, Jean
    Noworolski, Susan M.
    Weinberg, Vivian
    Cunha, Adam
    Kurhanewicz, John
    Gottschalk, Alexander H.
    Roach, Mack, III
    Hsu, I-Chow
    [J]. JOURNAL OF CONTEMPORARY BRACHYTHERAPY, 2018, 10 (03) : 193 - 201
  • [4] Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial
    Dearnaley, David P.
    Sydes, Matthew R.
    Graham, John D.
    Aird, Edwin G.
    Bottomley, David
    Cowan, Richard A.
    Huddart, Robert A.
    Jose, Chakiath C.
    Matthews, John H. L.
    Millar, Jeremy
    Moore, A. Rollo
    Morgan, Rachel C.
    Russell, J. Martin
    Scrase, Christopher D.
    Stephens, Richard J.
    Syndikus, Isabel
    Parmar, Mahesh K. B.
    [J]. LANCET ONCOLOGY, 2007, 8 (06) : 475 - 487
  • [5] Pelvic multi-organ segmentation on cone-beam CT for prostate adaptive radiotherapy
    Fu, Yabo
    Lei, Yang
    Wang, Tonghe
    Tian, Sibo
    Patel, Pretesh
    Jani, Ashesh B.
    Curran, Walter J.
    Liu, Tian
    Yang, Xiaofeng
    [J]. MEDICAL PHYSICS, 2020, 47 (08) : 3415 - 3422
  • [6] Girshick R., 2014, P IEEE C COMPUTER VI, DOI [10.1109/CVPR.2014.81, DOI 10.1109/CVPR.2014.81]
  • [7] Dose escalation to dominant intraprostatic lesions with MRI-transrectal ultrasound fusion High-Dose-Rate prostate brachytherapy. Prospective phase II trial
    Gomez-Iturriaga, Alfonso
    Casquero, Francisco
    Urresola, Arantza
    Ezquerro, Ana
    Lopez, Jose I.
    Espinosa, Jose M.
    Minguez, Pablo
    Llarena, Roberto
    Irasarri, Ana
    Bilbao, Pedro
    Crook, Juanita
    [J]. RADIOTHERAPY AND ONCOLOGY, 2016, 119 (01) : 91 - 96
  • [8] He K, 2016, European conference on computer vision, P630, DOI [10.1007/978-3-319-46493-0_38, DOI 10.1007/978-3-319-46493-0_38, DOI 10.1109/CVPR.2016.90]
  • [9] Automatic segmentation and quantification of epicardial adipose tissue from coronary computed tomography angiography
    He, Xiuxiu
    Guo, Bang Jun
    Lei, Yang
    Wang, Tonghe
    Fu, Yabo
    Curran, Walter J.
    Zhang, Long Jiang
    Liu, Tian
    Yang, Xiaofeng
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (09)
  • [10] Lei Y., 2019, MED PHYS