Robust nonparametric regression: A review

被引:30
作者
Cizek, Pavel [1 ]
Sadikoglu, Serhan [1 ]
机构
[1] Tilburg Univ, Dept Econometr & Operat Res, Tilburg, Netherlands
关键词
nonparametric regression; outliers; robust estimation; QUANTILE REGRESSION; BAHADUR REPRESENTATION; M-ESTIMATORS; CONDITIONAL QUANTILES; ASYMPTOTIC PROPERTIES; SMOOTHING PARAMETER; VARIABLE SELECTION; CONVERGENCE-RATES; KERNEL ESTIMATORS; ADDITIVE-MODELS;
D O I
10.1002/wics.1492
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonparametric regression methods provide an alternative approach to parametric estimation that requires only weak identification assumptions and thus minimizes the risk of model misspecification. In this article, we survey some nonparametric regression techniques, with an emphasis on kernel-based estimation, that are additionally robust to atypical and outlying observations. While the main focus lies on robust regression estimation, robust bandwidth selection and conditional scale estimation are discussed as well. Robust estimation in popular nonparametric models such as additive and varying-coefficient models is summarized too. The performance of the main methods is demonstrated on a real dataset. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Robust Methods Statistical and Graphical Methods of Data Analysis > Nonparametric Methods
引用
收藏
页数:16
相关论文
共 105 条
[11]  
Boente G., 1994, J. Nonparametr. Statist., V4, P91, DOI DOI 10.1080/10485259408832603
[12]   Robust estimators for additive models using backfitting [J].
Boente, Graciela ;
Martinez, Alejandra ;
Salibian-Barrera, Matias .
JOURNAL OF NONPARAMETRIC STATISTICS, 2017, 29 (04) :744-767
[13]   Marginal integration M-estimators for additive models [J].
Boente, Graciela ;
Martinez, Alejandra .
TEST, 2017, 26 (02) :231-260
[14]   Bandwidth choice for robust nonparametric scale function estimation [J].
Boente, Graciela ;
Ruiz, Marcelo ;
Zamar, Ruben H. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (06) :1594-1608
[15]   On a robust local estimator for the scale function in heteroscedastic nonparametric regression [J].
Boente, Graciela ;
Ruiz, Marcelo ;
Zamar, Ruben H. .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (15-16) :1185-1195
[16]  
Breiman L., 1984, wadsworth int. Group, DOI [DOI 10.1785/0120150058, DOI 10.1201/9781315139470]
[17]   ROBUST NONPARAMETRIC ESTIMATION VIA WAVELET MEDIAN REGRESSION [J].
Brown, Lawrence D. ;
Cai, T. Tony ;
Zhou, Harrison H. .
ANNALS OF STATISTICS, 2008, 36 (05) :2055-2084
[18]   Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models [J].
Cai, Zongwu ;
Xu, Xiaoping .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (484) :1595-1608
[19]   Regression quantiles for time series [J].
Cai, ZW .
ECONOMETRIC THEORY, 2002, 18 (01) :169-192
[20]   Resistant selection of the smoothing parameter for smoothing splines [J].
Cantoni, E ;
Ronchetti, E .
STATISTICS AND COMPUTING, 2001, 11 (02) :141-146