The categories of Yetter-Drinfel'd modules, Doi-Hopf modules and two-sided two-cosided Hopf modules

被引:5
作者
Beattie, M
Dascalescu, S
Raianu, S
van Oystaeyen, F
机构
[1] Mt Allison Univ, Dept Math & Comp Sci, Sackville, NB E4L IE6, Canada
[2] Univ Bucharest, Fac Math, R-70109 Bucharest, Romania
[3] Univ Instelling Antwerp, Dept Math, B-2610 Antwerp, Belgium
基金
加拿大自然科学与工程研究理事会;
关键词
comodules; Hopf modules; Yetter-Drinfel'd modules;
D O I
10.1023/A:1008660029543
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the two-sided two-cosided Hopf modules are in some case generalized Hopf modules in the sense of Doi. Then the equivalence between two-sided two-cosided Hopf modules and Yetter-Drinfel'd modules, proved in [8], becomes an equivalence between categories of Doi-Hopf modules. This equivalence induces equivalences between the underlying categories of (co)modules. We study the relation between this equivalence and the one given by the induced functor.
引用
收藏
页码:223 / 237
页数:15
相关论文
共 10 条
[1]  
Caenepeel S, 1995, MATH APPL, V343, P73
[2]   Crossed modules and Doi-Hopf modules [J].
Caenepeel, S ;
Militaru, G ;
Zhu, SL .
ISRAEL JOURNAL OF MATHEMATICS, 1997, 100 (1) :221-247
[3]  
COHEN M, 1992, J ALGEBRA, V133, P251
[4]   Some remarks on a theorem of H.-J. Schneider [J].
Dascalescu, S ;
Raianu, S ;
VanOystaeyen, F .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (14) :4477-4493
[5]  
DOI Y, 1992, J ALGEBRA, V153, P373, DOI 10.1016/0021-8693(92)90160-N
[6]  
FISCHMAN D, 1989, THESIS B GURION U
[7]  
MONTGOMERY S, 1993, CBMS REG C SERIES, V82
[8]   HOPF MODULES AND YETTER-DRINFELD MODULES [J].
SCHAUENBURG, P .
JOURNAL OF ALGEBRA, 1994, 169 (03) :874-890
[9]  
Sweedler M E, 1969, HOPF ALGEBRAS
[10]   DIFFERENTIAL-CALCULUS ON COMPACT MATRIX PSEUDOGROUPS (QUANTUM GROUPS) [J].
WORONOWICZ, SL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 122 (01) :125-170